Navigation Links
Forsyth scientists trigger cancer-like response from embryonic stem cells
Date:10/13/2008

Boston--Scientists from The Forsyth Institute, working with collaborators at Tufts and Tuebingen Universities, have discovered a new control over embryonic stem cells' behavior. The researchers disrupted a natural bioelectrical mechanism within frog embryonic stem cells and trigged a cancer-like response, including increased cell growth, change in cell shape, and invasion of the major body organs. This research shows that electrical signals are a powerful control mechanism that can be used to modulate cell behavior.

The team of Forsyth Institute scientists, led by Michael Levin, Ph.D., Director of the Forsyth Center for Regenerative and Developmental Biology, have identified a new function for a potassium (KCNQ1) channel, mutations of which are known to be involved in human genetic diseases such as Romano-Ward and Jervell-Lange-Nielsen syndromes. The team interrupted the flow of potassium through KCNQ1 in parts of the Xenopus frog embryo. This resulted in a striking alteration of the behavior of one type of embryonic stem cell: the pigment cell lineage of the neural crest. When mutated, these pigment cells over-proliferate, spread out, and become highly invasive of blood vessels, liver, heart, and neural tube, leading to a deeply hyper-pigmented tadpole.

The body's natural biophysical signals, driven by ion transporter proteins and resulting in endogenous voltage gradients and electric fields, have been implicated in embryonic development and regeneration. The data in this study, which will be published in the Proceedings of the National Academy of Sciences on October 13, 2008, have not only elucidated a novel role for the KCNQ1 channel in regulating key cell behaviors, but for the first time have also revealed the molecular identity of a biophysical switch by means of which neoplastic-like properties can be conferred upon a specific embryonic stem cell sub-population. These data reveal that key properties of embryonic stem cells can be controlled through bioelectrical signals, identify transmembrane voltage potential as a novel regulator of neural crest function in embryonic development, and demonstrate that potassium flows can be an important aspect of cellular environment, which is known to regulate both cancer and stem cells.

"In regenerative medicine, a key goal is to control the number, position, and type of cells," said the paper's first author, Junji Morokuma, Ph.D. "This research is especially exciting because it shows the importance of electrical signals for changing cell behavior, identifies a new role in developmental and cell biology for the KCNQ1 ion channel, and strengthens the link between stem cells and tumor cells. Added Doug Blackiston, Ph.D., paper co-author, "In the future, this work may lead to a greater understanding of the causes of cancer and ways to potentially halt its metastasis, as well as suggesting new techniques by which stem cells may be controlled in biomedical applications."


'/>"/>

Contact: Jennifer Kelly
jkelly@forsyth.org
617-892-8602
Forsyth Institute
Source:Eurekalert

Related biology news :

1. Scientists trace molecular origin of proportional development
2. Sensitive nanowire disease detectors made by Yale scientists
3. Scent on demand: Hebrew University scientists enhance the scent of flowers
4. MSU scientists find new gene that helps plants beat the heat
5. Cold Spring Harbor Laboratory scientists trace a novel way cells are disrupted in cancer
6. Brookhaven scientists take off for southeastern Pacific climate study
7. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
8. Scientists identify a molecule that coordinates the movement of cells
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Earth scientists keep an eye on Texas
11. MU scientists see how HIV matures into an infection
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/3/2016)... LONDON , June 3, 2016 /PRNewswire/ ... Transport Management) von Nepal ... ,Angebot und Lieferung hochsicherer geprägter Kennzeichen, einschließlich ... weltweit führend in der Produktion und Implementierung ... an der Ausschreibung im Januar teilgenommen, aber ...
(Date:6/1/2016)... YORK , June 1, 2016 ... Technology in Election Administration and Criminal Identification to Boost ... to a recently released TechSci Research report, " Global ... By Region, Competition Forecast and Opportunities, 2011 - 2021", ... 24.8 billion by 2021, on account of growing security ...
(Date:5/12/2016)... 2016 WearablesResearch.com , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case report published ... how a patient who developed lymphedema after being treated for breast cancer benefitted from ... the paradigm for dealing with this debilitating, frequent side effect of cancer treatment. ...
(Date:6/23/2016)... , June 23, 2016 On ... session at 4,833.32, down 0.22%; the Dow Jones Industrial Average ... 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez ... Inc. (NASDAQ: BIND ). Learn more about these ...
(Date:6/23/2016)... SAN FRANCISCO , June 22, 2016  Amgen ... platinum sponsorship of the QB3@953 life sciences ... improve human health. The shared laboratory space at QB3@953 ... startups overcome a key obstacle for many early stage ... As part of the sponsorship, Amgen launched two "Amgen ...
Breaking Biology Technology: