Navigation Links
Forest Service and partners to conduct longleaf pine-carbon research on military bases in 3 states
Date:11/17/2010

AUDIO: In this clip, Johnsen says, This project will give the Defense Department biologically based models that will improve the militarys ability to manage longleaf pine forests for carbon sequestration, productivity,...

Click here for more information.

RESEARCH TRIANGLE PARK, NC USDA Forest Service Southern Research Station (SRS) scientists and university partners are beginning work on an innovative research project in three states that will help the Department of Defense (DOD) better manage longleaf pine forests on military bases for absorbing climate-changing carbon dioxide and providing other ecological services. SRS, Auburn University (the lead institution) and University of Florida researchers will conduct the five-year, $2.4 million study on longleaf pine forests on Fort Polk in Louisiana, Fort Benning in Georgia, and Camp Lejeune in North Carolina. Research organizers say the study is the largest carbon sequestration assessment of longleaf pine ecosystems conducted on southern military bases.

"This project will give the Defense Department biologically based models that will improve the military's ability to manage longleaf pine forests for carbon sequestration, productivity, and biodiversity, while promoting the health and restoration of these native ecosystems," said Kurt Johnsen, Ph.D., a plant physiologist based in Research Triangle Park, NC, and SRS's principal investigator on the project. "In addition, the research will help answer larger questions about the carbon cycle in longleaf pine forests and provide valuable information that the federal government and others can use in offsetting carbon dioxide emissions."

Longleaf pine forests were once the largest temperate forest type in North America occupying up to 90 million acres across the South. Land clearing for crops and pastures, logging, turpentine operations, conversion to other southern pines, and the interruption of natural fire regimes reduced the longleaf forest to approximately 3 percent of its original range. Longleaf pine forests have a high potential to sequester carbon and there is a renewed interest in restoring longleaf pine for high-value wood products, pine straw production and wildlife benefits. Longleaf pine ecosystems, among the most diverse in temperate North America, provide habitat for threatened and endangered species such as the red-cockaded woodpecker.

AUDIO: In the audio, Johnsen says, The Southern Research Station will measure important ways carbon is stored in longleaf pine forests. First, we will determine how fast longleaf pine roots decompose...

Click here for more information.

The research is funded by DOD through the Strategic Environmental Research and Development Program (SERDP), an environmental research program. SERDP uses the latest science and technology to improve environmental performance, reduce costs, and enhance and sustain mission capabilities within DOD.

The study supports DOD's transition of forest management toward an ecological forestry model that balances military mission support with the maintenance of ecological services with a view toward offsetting facility carbon emissions.

Lisa Samuelson, Ph.D., tree physiologist and director of the Center for Longleaf Pine Ecosystems at Auburn University, will direct the project. She will also lead an effort to quantify carbon in longleaf pine aboveground mass and root systems as well as other components of the 45,000 acres of longleaf pine ecosystems at Fort Polk, Fort Benning and Camp Lejeune. Besides intensive and extensive excavations of root systems of trees 5 to 50 years old, this work will also use ground-penetrating radar to measure root biomass. This research will help answer questions about longleaf pine's ability to sequester carbon and allow researchers to predict longleaf carbon sequestration capabilities.

SRS scientists will lead efforts to quantify both longleaf pine root decomposition rates and the importance of black carbon (residue after biomass burning) in carbon sequestration. Longleaf pine is a fire-adapted species and frequent prescribed fire is integral to its successful management. Such fire deposits "black carbon" in the form of charcoal and soot - forms of carbon that persist for up to centuries in forest soil. SRS researchers John Butnor and Chris Maier, Ph.D., are co-investigators on the study.

Tim Martin, Ph.D., tree physiologist and director of the Carbon Resources Science Center at the University of Florida, and his colleagues will combine data from the research project with SRS experimental forest data and published scientific literature to modify models that DOD land managers can use to manage their longleaf pine forest resource. The carbon cycle models will help forest managers simulate scenarios for young planted longleaf pine stands and a single-tree-based model that can simulate older (40 to >200 years) longleaf pine stands.


'/>"/>

Contact: Stevin Westcott
swestcott@fs.fed.us
828-259-0512
USDA Forest Service ‑ Southern Research Station
Source:Eurekalert

Related biology news :

1. Lichens function as indicators of nitrogen pollution in forests
2. Tropical rainforest and mountain species may be threatened by global warming
3. Forest peoples rights key to reducing emissions from deforestation
4. When it comes to forest soil, wildfires pack 1-2 punch
5. University of Leicester professor adds new perspective to rainforest debate
6. Wake Forest plays integral role in effort to revolutionize vehicle safety
7. Diversity of trees in Ecuadors Amazon rainforest defies simple explanation
8. Earthworm activity can alter forests carbon-carrying capabilities
9. Living fossil tree contains genetic imprints of rain forests under climate change
10. Dried mushrooms slow climate warming in Northern forests
11. Wildfires result in loss of forests reserved by Northwest Forest Plan
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2017)... Australia , March 9, 2017 4Dx ... prestigious World Lung Imaging Workshop at the University of ... was invited to deliver the latest data to world ... recognised event brings together leaders at the forefront of ... in lung imaging. "The quality of ...
(Date:3/7/2017)... Brandwatch , the leading social intelligence company, today ... to uncover insights to support its reporting, help direct future ... UK,s leading youth charity will be using Brandwatch Analytics social listening ... better understanding of the topics and issues that are a priority ... ...
(Date:3/6/2017)... 6, 2017 Mintigo , the ... announced Predictive Sales Coach TM , its new ... intelligence into Salesforce. This unique AI application will ... organizations with deep knowledge of their customers and ... engagement. Predictive Sales Coach extends Mintigo,s existing customer ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... ... 18, 2017 , ... Optofluidics today announced that it's changing ... company changed focus to making analytical tools for biopharmaceutical quality control. “We are ... CEO Robert Hart. Founders Bernardo Cordovez, Robert Hart and David Erickson have steered ...
(Date:4/19/2017)... ... April 19, 2017 , ... WHO: Peggy Lillis Foundation, ... education and advocacy. Founded in 2010 in memory of a single-parent mom and ... has become the most-consulted source for patient-focused information on C. diff infections in ...
(Date:4/19/2017)... , April 19, 2017  As a ... and Heroin Summit ,  Proove® Biosciences, Inc. ... genetics, environmental, and lifestyle factors to accurately predict ... University of Southern California (USC), the Interventional Pain ... Proove publish results showing that Proove Opioid Risk® ...
(Date:4/19/2017)... 19, 2017   Thermo Fisher Scientific Inc ... Procalcitonin MOnitoring SEpsis (MOSES) Study have been published ... Critical Care Medicine . Researchers from the study, ... Patients: Results From the Multicenter Procalcitonin MOnitoring SEpsis ... PCT (procalcitonin) assay to assess risk for 28 ...
Breaking Biology Technology: