Navigation Links
Forcing chromosomes into loops may switch off sickle cell disease
Date:8/14/2014

Scientists have altered key biological events in red blood cells, causing the cells to produce a form of hemoglobin normally absent after the newborn period. Because this hemoglobin is not affected by the inherited gene mutation that causes sickle cell disease, the cell culture findings may give rise to a new therapy for the debilitating blood disorder.

The novel approach uses protein-engineering techniques to force chromatin fiber, the substance of chromosomes, into looped structures that contact DNA at specific sites to preferentially activate genes that regulate hemoglobin. "We have demonstrated a novel way to reprogram gene expression in blood-forming cells," said study leader Gerd A. Blobel, M.D., Ph.D., who holds the Frank E. Weise III Endowed Chair in Pediatric Hematology at The Children's Hospital of Philadelphia. "If we can translate this approach into the clinic, this may become a new treatment for patients with sickle-cell disease."

Blobel and colleagues, including Wulan Deng, Ph.D., formerly a member of the Blobel laboratory, and current lab member Jeremy W. Rupon, M.D., Ph.D., published their findings online today in Cell.

Key to the researcher's strategy is a developmental transition that normally occurs in the blood of newborns. A biological switch regulates a changeover from fetal hemoglobin to adult hemoglobin as it begins to silence the genes that produce fetal hemoglobin. This has major consequences for patients with the mutation that causes sickle cell disease (SCD).

Fetal hemoglobin is not affected by this mutation. But as adult hemoglobin starts to predominate, patients with the SCD mutation begin to experience painful, sometimes life-threatening disease symptoms as misshapen red blood cells disrupt normal circulation, clog blood vessels and damage organs.

Hematologists have long known that sickle cell patients with elevated levels of fetal hemoglobin compared to adult hemoglobin have a milder form of the disease. "This observation has been a major driver in the field to understand the molecular basis of the mechanisms that control the biological switch, with the ultimate goal to reverse it," said Blobel.

In previous research, Blobel's team used bioengineering techniques to adapt zinc-finger proteins to latch onto specific DNA sites far apart on a chromosome. The chromatin loop that results transmits regulatory signals for specific genes.

In their current work, the scientists custom-designed zinc fingers to flip the biological switch in blood-forming cells, reactivating the genes expressing fetal hemoglobin at the expense of the genes expressing adult hemoglobin. The researchers achieved these results in cultured blood cells from adult mice and adult humans.

The next step, said Blobel, is to apply this proof-of-concept technique to preclinical models, by testing the approach in animals genetically engineered to have manifestations of SCD similar to that found in human patients. If this strategy corrects the disease in animals, it may set the stage to move to human trials.

In principle, added Blobel, the forced chromatin looping approach could also be applied to other hemoglobin-related disorders, such as certain forms of thalassemia in which elevated fetal hemoglobin levels might be beneficial.


'/>"/>

Contact: Rachel Salis-Silverman
salis@email.chop.edu
267-426-6063
Children's Hospital of Philadelphia
Source:Eurekalert

Related biology news :

1. Rewriting the history of volcanic forcing during the past 2,000 years
2. Drought, river fragmentation forcing endangered fish out of water, biologist finds
3. Unique chromosomes preserved in Swedish fossil
4. Epigenetic regulation required to ensure correct number of chromosomes
5. Chromosomes show off their shapes
6. UMMS researchers answer century old question about 3D structure of mitotic chromosomes
7. X chromosomes: Undoing a hairpin doubles gene activity
8. A closer look at chromosomes
9. Western aspen trees commonly carry extra set of chromosomes
10. Study of fruit fly chromosomes improves understanding of evolution and fertility
11. Men can rest easy - sex chromosomes are here to stay
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/6/2017)... -- Delta ID Inc., a leader in consumer-grade iris scanning ... CES® 2017. Delta ID has collaborated with Gentex Corporation ... of iris scanning as a secure, reliable and convenient ... car, and as a way to elevate the security ... ID and Gentex will demonstrate (booth #7326 LVCC) a ...
(Date:12/22/2016)... YORK , December 22, 2016 ... provider of secure solutions for the e-Government, Public Safety, HealthCare, and ... subsidiary of SuperCom, has been selected to implement and deploy a ... in Northern California , further expanding its presence ... ...
(Date:12/16/2016)... 16, 2016 Research and Markets has announced ... Global Forecast to 2021" report to their offering. ... The biometric vehicle access ... a CAGR of 14.06% from 2016 to 2021. The market is ... to reach 854.8 Million by 2021. The growth of the biometric ...
Breaking Biology News(10 mins):
(Date:1/17/2017)... -- Research and Markets has announced the addition ... Markets and Companies" to their offering. ... The number of ... past few years. More than 1,000 companies have been identified ... these are profiled in the report along with tabulation of ...
(Date:1/17/2017)... ... January 17, 2017 , ... ... Safety Technology Consortium™ (SafeTEC™), $3 million in investment towards 15+ TEC Validation Projects™. ... and assays, and their applicability in drug safety assessment, for the industry as ...
(Date:1/16/2017)... ... January 16, 2017 , ... Appellate Court ... decision on the appeal filed by India-based Dishman Pharmaceutical & Chemical Ltd. company ... DPCL and one of its Dishman Group’s 100% wholly owned New Jersey-based subsidiary ...
(Date:1/14/2017)... Va. , Jan. 13, 2017  The Alliance ... statement in response to FDA final guidance ... for its continued leadership in emphasizing the importance of ... are keenly aware of the benefits biosimilars will bring ...   Yet the portion of the Guidance ...
Breaking Biology Technology: