Navigation Links
For mitochondria, bigger may not be better
Date:8/23/2012

Goldilocks was on to something when she preferred everything "just right." Harvard Medical School researchers have found that when it comes to the length of mitochondria, the power-producing organelles, applying the fairy tale's mantra is crucial to the health of a cell. More specifically, abnormalities in mitochondrial length promote the development of neurodegenerative diseases such as Alzheimer's.

"There had been a fair amount of interest in mitochondria in Alzheimer's and tau-related diseases, but causality was unknown," said Brian DuBoff, first author of the study and a post-doctoral research fellow at Massachusetts General Hospital.

"Ultimately, a deeper understanding of the relationship between mitochondrial function and Alzheimer's may guide us to develop more targeted therapies in the future," said Mel Feany, HMS professor of pathology at Brigham and Women's Hospital and senior author of the paper.

The findings will be published online in the August 23 issue of Neuron.

Tau-related diseases are caused when tau, a protein most commonly found in neurons, malfunctions. Tau binds to microtubules in cells, a process known as stabilization. This binding is necessary so the microtubules can help maintain cell structure and aid in intracellular processes such as transporting molecules. When tau is defective, most often due to changes introduced during protein synthesis, it can accumulate in neurofibrillary tangles, one of the primary markers of Alzheimer's.

In this particular study, conducted in fruit flies with defective tau protein, DuBoff found that the mitochondria in the brain cells of these flies were elongated compared with the mitochondria in flies with normal tau. The elongation, he observed, adversely affected mitochondrial function.

"Normally, one mitochondrion will split into two, two mitochondria will join into one, and that's a critical process for the health and stability of the mitochondria," said DuBoff. "This mitochondrial dynamic happens continuously in almost all cells. Interruption of this process leads to cell death, and loss of nerve cells in the brain results in loss of functionmemory loss and difficulty in comprehension and coordination." The presence of defective tau, then, interrupts the functioning of mitochondria and contributes to neurodegeneration.

To further observe how mitochondrial dynamics were affected by the presence of defective tau, the researchers modified two sets of genes in human-tau-expressing flies, one that controls how mitochondria divide and another that guides how they come together. When the expression of the gene that causes mitochondrial lengthening, or fusion, was increased, the level of neurodegeneration in the flies increased and the flies were sicker. Conversely, when the expression of the gene that causes mitochondrial division, or fission, was increased, the defect reversed and the flies' condition improved.

The study also showed that, in addition to tau, two other key proteins influenced the neurodegenerative process: DRP1, which helps in the fission of mitochondria, and actin, which is essential to maintaining cell structure and movement. A previous study in Feany's lab had shown that the presence of defective tau hampers the activity of actin. With this knowledge, the researchers were able to piece together the relationship among the three proteins. DRP1 and actin are interdependent: the regulatory state of actin is essential for DRP1 and mitochondria to come together, thus preserving mitochondrial dynamics. But the presence of defective tau harms this relationship, rendering DRP1 incapable of maintaining mitochondrial dynamics, which ultimately leads to neurodegeneration.

"We have a good idea now of where the process starts. We know it ends with neurodegeneration, and with this study, we know some milestones along the way," said Feany. "But we still have to fill in the gaps and learn more about DRP1 and its role in this process."

"Many studies begin by looking at a normal biological process and then finding ways it goes wrong," said DuBoff. "We did the opposite. We started with the disease model, identified this phenomenon of DRP1 and mitochondrial dysfunction, and then followed it back to the basic biological regulation of this process."


'/>"/>
Contact: David Cameron
david_cameron@hms.harvard.edu
617-432-0441
Harvard Medical School
Source:Eurekalert

Related biology news :

1. Want bigger plants? Get to the root of the matter
2. Bigger refuges needed to delay pest resistance to biotech corn
3. Bigger gorillas better at attracting mates and raising young
4. Birds do better in agroforests than on farms
5. A new avenue to better medicines: Metal-peptide complexes
6. Physics confirms sprinters are performing better than ever before
7. Not-so-precious: Stripping gold from AFM probes allows better measurement of picoscale forces
8. Screening horticultural imports: New models assess plant risk through better analysis
9. Arsenic for better drugs and cleaner crops
10. Better looking birds have more help at home with their chicks
11. Evaluation of microscopy techniques may help scientists to better understand ancient plants
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/17/2016)... CITY OF INDUSTRY, Calif. , Nov. 17, 2016  AIC announces that it ... about using NVMe storage servers in organizations that require high-performance scale-out plus high speed data transfer ... ... ... Setting ...
(Date:11/15/2016)... 15, 2016  Synthetic Biologics, Inc. (NYSE MKT: ... on the gut microbiome, today announced the pricing ... of its common stock and warrants to purchase ... price to the public of $1.00 per share ... from the offering, excluding the proceeds, if any ...
(Date:11/14/2016)... SARASOTA, Fla., Nov. 14, 2016  xG Technology, Inc. ... in providing critical wireless communications for use in challenging ... ended September 30, 2016. Management will hold a conference ... at 5:00 p.m. Eastern Time (details below). ... announced a $16 million binding agreement to acquire Vislink ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... Spain , Dec. 8, 2016  Anaconda BioMed ... the development of the next generation neuro-thrombectomy system for ... appointment of Tudor G. Jovin, MD to join its ... serve as a strategic network of scientific and clinical ... the development of the ANCD BRAIN ® to ...
(Date:12/8/2016)... ... December 08, 2016 , ... ... launch of flexible packaging for their exceptionally efficient human mesenchymal stem/stromal cell ... RoosterBio’s portfolio of bioprocess media products engineered to radically streamline culture processes, ...
(Date:12/8/2016)... , ... December 08, 2016 , ... This CAST literature ... for biotech crops. The authors focus on the economic effects in countries that are ... of new biotech crops and the resultant risk of low level presence (LLP) puts ...
(Date:12/8/2016)... , Dec. 8, 2016 Soligenix, Inc. ... company focused on developing and commercializing products to treat ... announced today that it will be hosting an Investor ... ET on the origins of innate defense regulators (IDRs) ... review of oral mucositis and the recently announced and ...
Breaking Biology Technology: