Navigation Links
Folate mystery finally solved
Date:8/22/2007

Some biochemical processes, especially those in bacteria, have been so well studied its assumed that no discoveries are left to be made. Not so, it turns out, for Johns Hopkins researchers who have stumbled on the identity of an enzyme that had been a mystery for more than 30 years. The report appears in the May 15 issue of Structure.

It was really quite a surprise when we realized we had discovered the unknown player in how bacteria make the B vitamin folate, a player that weve known of since 1974, says study author L. Mario Amzel, Ph.D., professor and director of biophysics and biophysical chemistry at Hopkins. Basic research can be so serendipitous at times.

Amzel and colleague Maurice Bessman and their labs were in the middle of systematically characterizing how members of a family of related enzymes in bacteria can recognize specific molecules. With each family member, they isolated purified enzyme, grew crystals of pure enzyme, and figured out the enzymes 3-D structure by using techniques that use X-rays.

Armed with the 3-D structure, they then used computer modeling to analyze how the enzyme binds to and acts on another molecule, its substrate.

We still didnt know that it was anything special until Maurice started searching old publications, says study author Sandra Gabelli, Ph.D. As it turns out, Suzuki and coworkers in 1974 had published evidence of an enzyme in the bacteria E. coli with similar characteristics to ours that could initiate folate biosynthesis.

So we had to ask, Can the bacteria make folate if we remove the orf17 gene" says Amzel. Bessman and colleagues then knocked-out the gene and, predictably, the bacteria made 10 times less folate than usual.

It was such a sweet discovery, says Gabelli. Its scientific discovery the old-fashioned way, finding something we werent looking for.

The mechanics behind how bacteria make folate are of particular interest to scientists who want to design more powerful antibacterial drugs. Humans cannot make folate because they do not have any of the same molecular machinery. Therefore, its possible to design drugs that target the bacterial folate machinery that would not lead to side effects in humans.

Their discovery, says Amzel, identifies yet another potential antibacterial target. We are not in that business of drug designwere focused on the basics, figuring out how things work, he says. We do hope that others can use what we find to make new drugs.


'/>"/>
Contact: Nick Zagorski
443-287-2251
Johns Hopkins Medical Institutions
Source:Eurekalert

Related biology news :

1. Scientists genetically engineer tomatoes with enhanced folate content
2. 50-year-old Mystery Solved: Protein Tags Regulate Key Ion Channel
3. Mystery Blood Vessel Disorder Implicated In Mini Strokes
4. Researchers make headway in mystery of migraines
5. Monkeypox mystery: New research may explain why 2003 outbreak in the US wasnt deadly
6. Researchers solve mystery of how nuclear pores duplicate before cell division
7. Scientists seek to unwrap the sweet mystery of the sugar coat on bacteria
8. Evolution mystery: Spider venom and bacteria share same toxin
9. Possible brain hormone may unlock mystery of hibernation
10. Mystery solved: Golds power against autoimmune diseases defined
11. ANU scientists crack DNA replication mystery
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... LONDON , April 4, 2017 KEY ... is anticipated to expand at a CAGR of 25.76% ... neurodegenerative diseases is the primary factor for the growth ... full report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The ... of product, technology, application, and geography. The stem cell ...
(Date:3/30/2017)... NEW YORK , March 30, 2017 ... by type (physiological and behavioral), by technology (fingerprint, AFIS, ... recognition, voice recognition, and others), by end use industry ... travel and immigration, financial and banking, and others), and ... Europe , Asia Pacific ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... Lithuania, announced today that they have entered into a multiyear collaboration to identify ... CRISPR researchers with additional tools for gene editing across all applications. , Under ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... genomics analysis platform specifically designed for life science researchers to analyze and ... researcher Rosalind Franklin, who made a major contribution to the discovery of ...
(Date:10/11/2017)... ... October 11, 2017 , ... The ... endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. ... is transformative for performing systematic gain-of-function studies. , This complement to loss-of-function ...
Breaking Biology Technology: