Navigation Links
Flipping the 'off' switch on cell growth
Date:2/22/2013

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery has wide-ranging implications, they say, given the importance of this copying known as DNA replication and new cell growth to many of the body's functions and in such diseases as cancer.

"We've long known that this protein, HIF-1α, can switch hundreds of genes on or off in response to low oxygen conditions," says Gregg Semenza, M.D., Ph.D., a molecular biologist who led the research team and has long studied the role of low-oxygen conditions in cancer, lung disease and heart disorders. "We've now learned that HIF-1α is even more versatile than we thought, as it can work directly to stop new cells from forming." A report on the discovery appears in the Feb. 12 issue of Science Signaling.

With his team, Semenza, who is the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine's Institute for Cell Engineering and Institute for Genomic Medicine, discovered HIF-1α in the 1990s and has studied it ever since, pinpointing a multitude of genes in different types of cells that have their activity ramped up or down by the activated protein. These changes in so-called "gene expression" help cells survive when oxygen-rich blood flow to an area slows or stops temporarily; they also allow tumors to build new blood vessels to feed themselves.

To learn how HIF-1α's own activity is controlled, the team looked for proteins from human cells that would attach to HIF-1α. They found two, MCM3 and MCM7, that limited HIF-1α's activity, and were also part of the DNA replication machinery. Those results were reported in 2011.

In the new research, Semenza and his colleagues further probed HIF-1α's relationship to DNA replication by comparing cells in low-oxygen conditions to cells kept under normal conditions. They measured the amount of DNA replication complexes in the cells, as well as how active the complexes were. The cells kept in low-oxygen conditions, which had stopped dividing, had just as much of the DNA replication machinery as the normal dividing cells, the researchers found; the difference was that the machinery wasn't working. It turned out that in the nondividing cells, HIF-1α was binding to a protein that loads the DNA replication complex onto DNA strands, and preventing the complex from being activated.

"Our experiments answered the long-standing question of how, exactly, cells stop dividing in response to low oxygen," says Maimon Hubbi, Ph.D., a member of Semenza's team who is now working toward an M.D. degree. "It also shows us that the relationship between HIF-1α and the DNA replication complex is reciprocal that is, each can shut the other down."


'/>"/>

Contact: Shawna Williams
shawna@jhmi.edu
410-955-8236
Johns Hopkins Medicine
Source:Eurekalert

Related biology news :

1. Noncoding RNAs offer huge therapeutic and diagnostic potential
2. Get off my lawn: Song sparrows escalate territorial threats - with video
3. Modern growing methods may be culprit of coffee rust fungal outbreak
4. International biodiversity data symposium to mark the kickoff of the EU BON project
5. Tree die-off triggered by hotter temperatures
6. Experimental gene therapy treatment for Duchenne muscular dystrophy offers hope for youngster
7. Changes to DNA on-off switches affect cells ability to repair breaks, respond to chemotherapy
8. Study of human specimen collections in the US offers first look at their huge diversity
9. Dartmouth research offers new control strategies for bipolar bark beetles
10. Celladon Corporation Receives Notice of Allowance from United States Patent and Trademark Office
11. Study offers new insights into the mechanics of muscle fatigue
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/28/2016)... JOSE, Calif., Jan. 28, 2016 Synaptics (NASDAQ: SYNA ... results for its second quarter ended December 31, 2015. ... second quarter of fiscal 2016 increased 2 percent compared to the ... second quarter of fiscal 2016 was $35.0 million, or $0.93 per ... Non-GAAP net income for the first quarter of fiscal 2016 grew ...
(Date:1/22/2016)... January 22, 2016 ... addition of the  "Global Behavioral Biometric ... --> http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has ... Behavioral Biometric Market 2016-2020"  report to ... and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has announced ...
(Date:1/20/2016)...   MedNet Solutions , an innovative SaaS-based eClinical ... research, is pleased to announce the attainment of record-setting ... result of the company,s laser focus on (and growing ... it,s comprehensive, easy-to-use and highly affordable cloud-based technology platform. ... MedNet growth achievements in 2015 include: , ...
Breaking Biology News(10 mins):
(Date:2/5/2016)... 5, 2016 Australian-US drug discovery and development company, ... appointment of a new Chairman, Mr John O,Connor , ... immediately. James Garner , has also been ... former Acting CEO, Mr Iain Ross , will resume ... --> James Garner , has also been formally appointed ...
(Date:2/4/2016)... , Feb. 4, 2016  Sangamo BioSciences, Inc. (NASDAQ: ... announced today that Edward Lanphier , Sangamo,s president ... the progress of Sangamo,s ZFP Therapeutic ® development ... at 2:40 pm ET on Thursday, February 11, 2016, ... Healthcare Conference. The conference is being held in ...
(Date:2/4/2016)... -- Beike Biotechnology, the Shenzhen ... in late 2015 to mark their successful combined efforts ... --> --> The signing, ... Therapy" was hosted by the Shenzhen Cell Bank and ... Beike Biotechnology Co., Ltd. Shenzhen,s ...
(Date:2/4/2016)... February 4, 2016 --> ... acceleration company is pleased to provide the following update on ... Over the last 3 months we have significantly increased ... agreements exceeding $1,000,000. As a result, we have positioned ourselves ... Inc. license agreement and expect that development to continue on ...
Breaking Biology Technology: