Navigation Links
Flipping the 'off' switch on cell growth
Date:2/22/2013

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery has wide-ranging implications, they say, given the importance of this copying known as DNA replication and new cell growth to many of the body's functions and in such diseases as cancer.

"We've long known that this protein, HIF-1α, can switch hundreds of genes on or off in response to low oxygen conditions," says Gregg Semenza, M.D., Ph.D., a molecular biologist who led the research team and has long studied the role of low-oxygen conditions in cancer, lung disease and heart disorders. "We've now learned that HIF-1α is even more versatile than we thought, as it can work directly to stop new cells from forming." A report on the discovery appears in the Feb. 12 issue of Science Signaling.

With his team, Semenza, who is the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine's Institute for Cell Engineering and Institute for Genomic Medicine, discovered HIF-1α in the 1990s and has studied it ever since, pinpointing a multitude of genes in different types of cells that have their activity ramped up or down by the activated protein. These changes in so-called "gene expression" help cells survive when oxygen-rich blood flow to an area slows or stops temporarily; they also allow tumors to build new blood vessels to feed themselves.

To learn how HIF-1α's own activity is controlled, the team looked for proteins from human cells that would attach to HIF-1α. They found two, MCM3 and MCM7, that limited HIF-1α's activity, and were also part of the DNA replication machinery. Those results were reported in 2011.

In the new research, Semenza and his colleagues further probed HIF-1α's relationship to DNA replication by comparing cells in low-oxygen conditions to cells kept under normal conditions. They measured the amount of DNA replication complexes in the cells, as well as how active the complexes were. The cells kept in low-oxygen conditions, which had stopped dividing, had just as much of the DNA replication machinery as the normal dividing cells, the researchers found; the difference was that the machinery wasn't working. It turned out that in the nondividing cells, HIF-1α was binding to a protein that loads the DNA replication complex onto DNA strands, and preventing the complex from being activated.

"Our experiments answered the long-standing question of how, exactly, cells stop dividing in response to low oxygen," says Maimon Hubbi, Ph.D., a member of Semenza's team who is now working toward an M.D. degree. "It also shows us that the relationship between HIF-1α and the DNA replication complex is reciprocal that is, each can shut the other down."


'/>"/>

Contact: Shawna Williams
shawna@jhmi.edu
410-955-8236
Johns Hopkins Medicine
Source:Eurekalert

Related biology news :

1. Noncoding RNAs offer huge therapeutic and diagnostic potential
2. Get off my lawn: Song sparrows escalate territorial threats - with video
3. Modern growing methods may be culprit of coffee rust fungal outbreak
4. International biodiversity data symposium to mark the kickoff of the EU BON project
5. Tree die-off triggered by hotter temperatures
6. Experimental gene therapy treatment for Duchenne muscular dystrophy offers hope for youngster
7. Changes to DNA on-off switches affect cells ability to repair breaks, respond to chemotherapy
8. Study of human specimen collections in the US offers first look at their huge diversity
9. Dartmouth research offers new control strategies for bipolar bark beetles
10. Celladon Corporation Receives Notice of Allowance from United States Patent and Trademark Office
11. Study offers new insights into the mechanics of muscle fatigue
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market ... Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast ... from USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
Breaking Biology News(10 mins):
(Date:5/26/2017)... ... May 25, 2017 , ... ... full process behind each occurrence. Live cell imaging using fluorescence microscopy is the ... use of automated fluorescence microscopy methods will be discussed, from small animal models ...
(Date:5/24/2017)... ... May 24, 2017 , ... Today, the South Davis ... Advanced Biological Nutrient Recovery (ABNRâ„¢) technology at its 4,000,000 gallon per day South ... to sustainably meet current and future nutrient discharge regulations. The ABNR platform, which ...
(Date:5/24/2017)... 2017 (PRWEB) , ... May 24, 2017 , ... ... Medical systems are increasingly being developed with Wi-Fi connectivity to reduce the amount ... from room to room. In addition, compact mobile devices including infusion pumps, heart ...
(Date:5/23/2017)... Westminster, Colorado (PRWEB) , ... May 23, 2017 , ... ... amaranth as the most troublesome and difficult to control weed in 12 categories of ... found. , Almost 200 weed scientists across the U.S. and Canada participated in the ...
Breaking Biology Technology: