Navigation Links
Flexible electronics could help put off-beat hearts back on rhythm
Date:3/24/2010

CHAMPAIGN, Ill. Arrhythmic hearts soon may beat in time again, with minimal surgical invasion, thanks to flexible electronics technology developed by a team of University of Illinois researchers, in collaboration with the University of Pennsylvania School of Medicine and Northwestern University. These biocompatible silicon devices could mark the beginning of a new wave of surgical electronics.

Co-senior author John Rogers, the Lee J. Flory-Founder Chair in Engineering Innovation and a professor of materials science and engineering at Illinois, and his team will publish their breakthrough in the cover story of the March 24 issue of Science Translational Medicine.

Several treatments are available for hearts that dance to their own tempo, ranging from pacemaker implants to cardiac ablation therapy, a process that selectively targets and destroys clusters of arrhythmic cells. Current techniques require multiple electrodes placed on the tissue in a time-consuming, point-by-point process to construct a patchwork cardiac map. In addition, the difficulty of connecting rigid, flat sensors to soft, curved tissue impedes the electrodes' ability to monitor and stimulate the heart.

Rogers and his team have built a flexible sensor array that can wrap around the heart to map large areas of tissue at once. The array contains 2,016 silicon nanomembrane transistors, each monitoring electricity coursing through a beating heart.

The Pennsylvania team demonstrated the transistor array on the beating hearts of live pigs, a common model for human hearts. They witnessed a high-resolution, real-time display of the pigs' pulsing cardiac tissues something never before possible.

"We believe that this technology may herald a new generation of devices for localizing and treating abnormal heart rhythms," said co-sernior author Brian Litt, of the University of Pennsylvania.

"This allows us to apply the full power of silicon electronics directly to the tissue," said Rogers, a renowned researcher in the area of flexible, stretchable electronics. As the first class of flexible electronics that can directly integrate with bodily tissues, "these approaches might have the potential to redefine design strategies for advanced surgical devices, implants, prosthetics and more," he said.

The biocompatible circuits the first ones unperturbed by immersion in the body's salty fluids represent a culmination of seven years of flexible electronics study by Rogers' group. The researchers build circuits from ultrathin, single-crystal silicon on a flexible or stretchy substrate, like a sheet of plastic or rubber. The nanometer thinness of the silicon layer makes it possible to bend and fold the normally rigid semiconductor.

"If you can create a circuit that's compliant and bendable, you can integrate it very effectively with soft surfaces in the body," such as the irregular, constantly moving curves of the heart, Rogers said.

Collaborations with a theoretical mechanics group at Northwestern University, led by Younggang Huang, yielded important insights into the designs.

The patchwork grid of cardiac sensors adheres to the moist surfaces of the heart on its own, with no need for probes or adhesives, and lifts off easily. The array of hundreds of sensors gives cardiac surgeons a more complete picture of the heart's electrical activity so they can quickly find and fix any short circuits. In fact, the cardiac device boasts the highest transistor resolution of any class of flexible electronics for non-display applications.

The team's next step is to adapt the technology for use with non-invasive catheter procedures, Rogers said. The U. of I. and Pennsylvania teams also are exploring applications for the arrays in neuroscience, applying grids to brain surfaces to study conditions of unusual electrical activity, such as epilepsy.

"It sets out a new design paradigm for interfacing electronics to the human body, with a multitude of possible applications in human health," Rogers said.


'/>"/>

Contact: Liz Ahlberg
eahlberg@illinois.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology news :

1. IGERT fellows to design biodevices using flexible electronics
2. e-Smart(R) Technologies, Inc., Announces Next Generation Superthin Polyimide Flexible Circuit Biometric Super Smart Card(TM) card, the i am(TM) Card.
3. Generalist bacteria discovered in coastal waters may be more flexible than known before
4. Flexible solar strips light up campus bus shelter
5. Flexible neck in cell-receptor DC-SIGN targets more pathogens
6. Salmon garnish points the way to green electronics
7. Fine print: New technique allows fast printing of microscopic electronics
8. Small research at MSU leads to advances in energy, electronics
9. Carbon nanostructures form the future of electronics and optoelectronics
10. NJIT seminar set for Nov. 6 to focus on bioelectronics -- emerging research area
11. University of Miami engineer designs stretchable electronics with a twist
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Flexible electronics could help put off-beat hearts back on rhythm
(Date:5/16/2017)... N.J. , May 16, 2017  Veratad Technologies, ... provider of online age and identity verification solutions, announced ... K(NO)W Identity Conference 2017, May 15 thru May 17, ... Regan Building and International Trade Center. ... the globe and in today,s quickly evolving digital world, ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
(Date:4/19/2017)... New York , April 19, 2017 ... competitive, as its vendor landscape is marked by the ... the market is however held by five major players ... Safran. Together these companies accounted for nearly 61% of ... of the leading companies in the global military biometrics ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... TX May 24, 2017 (PRWEB) , ... May ... ... Constant Connectivity , Medical systems are increasingly being developed with Wi-Fi connectivity to ... be easily moved from room to room. In addition, compact mobile devices including ...
(Date:5/23/2017)... (PRWEB) , ... May 23, ... ... offer an unlimited source of human cardiovascular cells for research and the ... methods makes it possible to generate large numbers of cardiomyocytes (hPSC-CMs). Due ...
(Date:5/23/2017)... MENLO PARK, CA (PRWEB) , ... May 23, 2017 , ... ... announced the publication of “Label-free isolation of prostate circulating tumor cells using Vortex ... publication is the result of a collaboration with Dr. Dino Di Carlo and Dr. ...
(Date:5/23/2017)... ... May 23, 2017 , ... Cambridge Semantics , ... at this year’s Bio-IT World Conference and Expo in Boston May 23-25 ... 4.0 solution. The Anzo Smart Data Lake is also a finalist for the ...
Breaking Biology Technology: