Navigation Links
Fish guts explain marine carbon cycle mystery
Date:1/15/2009

Research published today reveals the major influence of fish on maintaining the delicate pH balance of our oceans, vital for the health of coral reefs and other marine life.

The discovery, made by a team of scientists from the UK, US and Canada, could help solve a mystery that has puzzled marine chemists for decades. Published today (16 January 2009) in Science, the study provides new insights into the marine carbon cycle, which is undergoing rapid change as a result of global CO2 emissions.

Until now, scientists have believed that the oceans' calcium carbonate, which dissolves to make seawater alkaline, came from the external 'skeletons' of microscopic marine plankton. This study estimates that three to 15 per cent of marine calcium carbonate is in fact produced by fish in their intestines and then excreted. This is a conservative estimate and the team believes it has the potential to be three times higher.

Fish are therefore responsible for contributing a major but previously unrecognised portion of the inorganic carbon that maintains the ocean's acidity balance. The researchers predict that future increases in sea temperature and rising CO2 will cause fish to produce even more calcium carbonate.

To reach these results, the team created two independent computer models which for the first time estimated the total mass of fish in the ocean. They found there are between 812 and 2050 million tonnes (between 812 billion and 2050 billion kilos) of bony fish in the ocean. They then used lab research to establish that these fish produce around 110 million tonnes (110 billion kilos) of calcium carbonate per year.

Calcium carbonate is a white, chalky material that helps control the delicate acidity balance, or pH, of sea water. pH balance is vital for the health of marine ecosystems, including coral reefs, and important in controlling how easily the ocean will absorb and buffer future increases in atmospheric CO2.

This calcium carbonate is being produced by bony fish, a group that includes 90% of marine fish species but not sharks or rays. These fish continuously drink seawater to avoid dehydration. This exposes them to an excess of ingested calcium, which they precipitate into calcium carbonate crystals in the gut. The fish then simply excrete these unwanted chalky solids, sometimes called 'gut rocks', in a process that is separate from digestion and production of faeces.

The study reveals that carbonates excreted by fish are chemically quite different from those produced by plankton. This helps explain a phenomenon that has perplexed oceanographers: the sea becomes more alkaline at much shallower depths than expected. The carbonates produced by microscopic plankton should not be responsible for this alkalinity change, because they sink to much deeper depths intact, often becoming locked up in sediments and rocks for millions of years. In contrast, fish excrete more soluble forms of calcium carbonate that are likely to completely dissolve at much shallower depths (e.g. 500 to 1,000 metres).

Lead author Dr Rod Wilson of the University of Exeter (UK) said: "Our most conservative estimates suggest three to 15 per cent of the oceans' carbonates come from fish, but this range could be up to three times higher. We also know that fish carbonates differ considerably from those produced by plankton. Together, these findings may help answer a long-standing puzzle facing marine chemists, but they also reveal limitations to our current understanding of the marine carbon cycle."

And what about the future? The researchers predict that the combination of increases in sea temperature and rising CO2 expected over this century will cause fish to produce even more calcium carbonate. This is for two reasons. Firstly, higher temperatures stimulate overall metabolism in fish, which drives all their biological processes to run faster. Secondly, increasing CO2 in their blood directly stimulates carbonate production by the gut specifically.

Dr Rod Wilson continues: "We have really only just scratched the surface of knowing the chemistry and fate of fish carbonates. Given current concerns about the acidification of our seas through global CO2 emissions, it is more important than ever that we understand how the pH balance of the sea is normally maintained. Because of the impact of global climate change, fish are likely to have an even bigger influence on the chemistry of our oceans in future. So, it is vitally important that we build on this research to help fully understand these processes and how this will affect some of our most precious marine ecosystems."


'/>"/>

Contact: Sarah Hoyle
s.hoyle@exeter.ac.uk
01-392-262-062
University of Exeter
Source:Eurekalert

Related biology news :

1. MUHC and McGill scientists explain genetic disease first discovered in Quebec 24 years ago
2. Study helps explain connection between sleep apnea, stroke and death
3. Shared survival mechanism explains why good nerve cells last and bad cancer cells flourish
4. MIT researchers explain mystery of gravity fingers
5. New research helps explain genetics of Parkinsons disease
6. How do bacteria swim? Brown physicists explain
7. Study may explain exercise-induced fatigue in muscular dystrophies
8. Newly-discovered mechanism can explain the Beckwith-Wiedemann syndrome
9. Diatom genome helps explain success in trapping excess carbon in oceans
10. Duke team explains a longtime visual puzzler in new way
11. Bodys anti-HIV drug explained
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... June 9, 2016 Paris ... Teleste,s video security solution to ensure the safety of people ... during the major tournament Teleste, an international ... and services, announced today that its video security solution will ... to back up public safety across the country. The system ...
(Date:6/3/2016)... Das DOTM (Department ... hat ein 44 Millionen $-Projekt ... einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an Decatur ... Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale Anbieter ... aber Decatur wurde als konformste und innovativste ...
(Date:6/2/2016)... , June 2, 2016   The Weather Company , ... Watson Ads, an industry-first capability in which consumers will be ... able to ask questions via voice or text and receive ... Marketers have long sought an advertising ... that can be personal, relevant and valuable; and can scale ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... ... DNA microarray comparative genomic hybridization (array CGH) for HER2 genomic subtyping in ... molecular test results from tumors with previously documented positive, negative, and equivocal ...
(Date:12/2/2016)... ... December 01, 2016 , ... The Conference Forum has announced that ... and will take place on February 1-3, 2017 at the Roosevelt Hotel in New ... the program provides a unique 360-degree approach, which addresses the most up-to-date information regarding ...
(Date:12/2/2016)... ... December 02, 2016 , ... The ... to collaboratively developing improved chemistry, manufacturing and control technologies for the pharmaceutical ... with robust, probe-based sampling. , Online liquid chromatography analysis is becoming ...
(Date:12/2/2016)... The immunohistochemistry (IHC) market is projected to reach ... during the forecast period of 2016 to 2021 dominated by immunohistochemistry ... the largest share of immunohistochemistry (IHC) market, by end user.   ... , , ... across 225 pages, profiling 10 companies and supported with 181 tables ...
Breaking Biology Technology: