Navigation Links
Fish go mad for ginger gene
Date:9/28/2009

There may be plenty of fish in the sea but the medaka knows what it likes. A new study published in the open access journal BMC Biology shows how a single gene mutation that turns Japanese Killifish a drab grey colour renders them significantly less attractive to more colourful members of the opposite sex.

The medaka, found commonly in Southeast Asia, can be observed in a wide range of colours; from brown, to more uncommon orange and grey variations. Shoji Fukamachi led a team of researchers from the University of Konstanz, Germany and the University of Tokyo, who studied the effects of alterations in a colour-determining gene on mating preferences of the fish.

According to Fukamachi "We observed that the grey medaka were often rejected in favour of their brown or orange rivals. This is the first demonstration of a single gene that can change both secondary sexual characteristics and mating preferences".

The greys, however, need not be completely despondent at these findings, as the study also showed that they were preferentially selective for each other.

Orange colour in medaka is determined by the presence of pigmented structures known as xanthophores, and these are reduced in the grey fish carrying the mutant gene. By over-expressing this same gene, the researchers created super attractive bright orange medaka that induced hyperactivity in similarly engineered members of the opposite sex while other potential mates were ignored almost completely.

"Thus, the present finding of the xanthophore-dependent mate choice enables many ingenious experiments to be designed in this and other fish species" said Fukamachi, adding, "This discovery should further facilitate molecular dissection/manipulation of visual-based mate choice".

The strong like-for-like colour preference of medaka mating, suggests that sympatric speciation could occur as reproductive isolation follows colour switches due to mutations in this colour-determining gene.


'/>"/>

Contact: Graeme Baldwin
graeme.baldwin@biomedcentral.com
44-203-192-2165
BioMed Central
Source:Eurekalert  

Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Fish go mad for ginger gene
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
(Date:4/14/2016)... TEL AVIV, Israel , April 14, 2016 /PRNewswire/ ... in Behavioral Authentication and Malware Detection, today announced the ... has already assumed the new role. Goldwerger,s ... for BioCatch, on the heels of the deployment of ... In addition, BioCatch,s behavioral biometric technology, which discerns unique ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... 27, 2016 NanoStruck Technologies ... NSKQB) ( Frankfurt : 8NSK) gibt ... vom 13. August 2015 die Genehmigung von der ... zusätzliche 200.000.000 Einheiten auf 400.000.000 Einheiten zu erhöhen, ... Davon wurden 157.900.000 Einheiten mit dem ersten Teil ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... pleased to announce the appointment of John Tilton as Chief Commercial Officer.  Mr. ... and one of the founding commercial leaders responsible for the commercialization of multiple ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... to its Scientific Advisory Board. Dr. Lamka will assist PathSensors in expanding the ... , PathSensors deploys the CANARY® test platform for the detection of harmful ...
(Date:4/27/2016)... ... April 27, 2016 , ... Global Stem Cells Group ... Board. Ross is the founder of GSCG affiliate Kimera Labs in Miami. , In ... studied hematopoietic stem cell transplantation for hematologic disorders and the suppression of graft vs. ...
Breaking Biology Technology: