Navigation Links
Fish follow the rules to school
Date:11/8/2011

The rules of school are simple: it is all about watching the kid nearest to you and making sure you do what they do. Researchers at the mathematics department at Uppsala University, together with biologists at Sydney University have shown that fish apply similar rules when traveling in small shoals.

Some of the most mesmerizing sights in the natural world are seen in the collective motion of fish schools and shoals. In the ocean, vast schools of hundreds of thousands of fish can form which then move together in unison. The shoals we see in our local aquariums may be smaller but they are nonetheless impressive examples of how a group can move together without a leader. Researchers have been studying the shape and structure of fish shoals for some time. They have used computer simulations to hypothesise about how this co-ordination works. However, until now we have not been able to determine the rules by which individual fish interact with each other.

In a study published this week in PNAS, researchers at the mathematics institute in Uppsala, working together with biologists in Sydney, have studied groups of a small lake-dwelling fish, known as the mosquito fish. By tracking the fish using computer imaging and fitting mathematical models to how the fish interact with each other, the researchers were able to decode the rules by which these fish interact with each other. The rules turned out to be strikingly simple but effective. Fish try to catch up with other fish in front of them, but they slow down when they get too close. Much in the same way as car drivers on an open highway try to keep a fixed distance from each other. Fish also turn their bodies to move towards their neighbours and appear to react primarily to only their nearest neighbour. Through these simple rules, shoals of mosquito fish move in a co-ordinated fashion.

These studies of small groups of fish now set the scene for understanding larger schools form and move. Researchers in the collective animal behaviour group in Uppsala use a combination of data analysis and mathematical modelling to understand how, not only fish, but animals as diverse as ants, birds and humans behave together in groups.

Two videos feature shoals of four mosquito fish swimming in a rectangular tank. The first (http://www.youtube.com/watch?v=_DJWFt7yY8Y) shows how fish are tracked individually to follow their position and direction of movement. In the second video (http://www.youtube.com/watch?v=UVuG8pS4oBc), all the frames are transformed to follow the movement of one of the fish (in red). The colour of the other fish reflects their distance from the focal fish: the fish marked in green is the nearest neighbour etc. By looking at where the other fish of the shoal are when the fish in red speeds up, slows down, or turns to a particular direction the researchers can learn what "rules of motion" fish follow when schooling together.


'/>"/>
Contact: David Sumpter
david.sumpter@math.uu.se
46-073-069-0511
Uppsala University
Source:Eurekalert

Related biology news :

1. Do bacteria age? Biologists discover the answer follows simple economics
2. Team NJ house opens on DC Mall following week of round-the-clock work
3. Following the trail of conservation successes
4. Headaches are common in year following traumatic brain injury, especially among females
5. New findings on therapeutic hypothermia following cardiac arrest in children
6. Evolution of sport performances follows a physiological law
7. Pollination services at risk following declines of Swedish bumblebees
8. Undertreatment of cardiovascular disease in rheumatoid arthritis patients following a heart attack
9. Following trail of cell death in epilepsy patients to find ways to preserve brain health
10. Hypothermia proven to improve survival and outcomes following out-of-hospital cardiac arrest
11. New UF study shows some sharks follow mental map to navigate seas
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... On Monday, the Department of Homeland Security ... solutions for the Biometric Exit Program. The Request for ... (CBP), explains that CBP intends to add biometrics to ... United States , in order to deter visa ... Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/9/2016)... leader in attendance control systems is proud to announce the introduction of fingerprint attendance ... the right employees are actually signing in, and to even control the opening of ... ... ... Photo - ...
(Date:6/2/2016)... The Weather Company , an IBM Business (NYSE: IBM ... which consumers will be able to interact with IBM Watson ... or text and receive relevant information about the product or ... long sought an advertising solution that can create a one-to-one ... valuable; and can scale across millions of interactions and touchpoints. ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , ... announced today the Clinical Reach Virtual Patient Encounter CONSULT module which enables ... the physician and clinical trial team. , Using the CONSULT module, patients and physicians ...
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. ... the faculty of the University of North Carolina Kenan-Flagler Business School ... entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading ...
(Date:6/27/2016)... Ginkgo Bioworks , a leading organism design company ... as one of the World Economic Forum,s Technology ... companies. Ginkgo Bioworks is engineering biology to manufacture ... the nutrition, health and consumer goods sectors. The ... Fortune 500 companies to design microbes for their ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
Breaking Biology Technology: