Navigation Links
First nanoscale image of soil reveals an 'incredible' variety, rich with patterns
Date:4/28/2008

A handful of soil is a lot like a banana, strawberry and apple smoothie: Blended all together, it is hard to tell what's in there, especially if you have never tasted the fruits before.

But when you look at soil's organic carbon closely, it has an incredible variety of known compounds. And looking closely is exactly what Cornell researchers have done for the first time -- at a scale of 50 nanometers (1 nanometer equals the width of three silicon atoms). Until now, handfuls of soil humus (or the organic component of soil, formed by the decomposition of leaves and other plant material by soil microorganisms) looked remarkably similar.

According to a study published in the April issue of Nature Geoscience, knowing the structure and detailed composition of soil carbon could provide a better understanding of the chemical processes that cycle organic matter in soil. For example, the research may help scientists understand what happens when materials in the soil get wet, warm or cool and how soils sequester carbon, which has implications for climate change.

"There is this incredible nanoscale heterogeneity of organic matter in terms of soil," said Johannes Lehmann, a Cornell associate professor of crop and soil sciences and lead author of the study.

"None of these compounds that you can see on a nanoscale level looks anything close to the sum of the entire organic matter."

The soil measurements (actually, images produced by a highly focused X-ray beam) were made at the National Synchrotron Light Source at Brookhaven National Laboratory using an X-ray spectromicroscopy method developed by physicists at the State University of New York, Stony Brook. The method allowed the researchers to identify forms of organic carbon in the samples.

While the composition of organic carbon in soils from North America, Panama, Brazil, Kenya or New Zealand proved remarkably similar within each sample, the researchers found that within spaces separated by mere micrometers, soils from any of these locations showed striking variation in their compositions. For example, the compounds that "hang on the right and left of a clay mineral may be completely different," said Lehmann.

The researchers were also able to identify the origins of some of the nano-sized compounds, determining that some of them, for example, were microbe excretions and decomposed leaves.

The researchers also recognized patterns of where types of compounds are likely to be found at the nanoscale.

"Now we can start locating certain compounds," Lehmann said. "We find black carbon as distinct particles in pores, whereas we find microbial products smeared around surfaces of minerals."

The method now allows researchers to break soil down, separate compounds, conduct experiments on individual compounds and better understand the interactions, Lehmann said.


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University Communications
Source:Eurekalert

Related biology news :

1. And the first animal on Earth was a ...
2. First draft of transgenic papaya genome yields many fruits
3. UC biology prof traces his roots to the first Earth Day
4. Research identifies first method for testing, assessing drug treatments for Chagas disease
5. Lincoln Park Zoo launches first-of-its-kind wildlife reintroduction database
6. And the first animal on Earth was a...
7. Geneticist Francis Collins named first recipient of Inamori Ethics Prize at Case Western Reserve
8. First diagnostic test for Alzheimers and Parkinsons disease on the horizon
9. Childrens Hospital leads projects to develop nations first heart assist devices for young children
10. First rule of evolution suggests that life is destined to become more complex
11. Scientists launch first comprehensive database of human oral microbiome
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2017)... York , April 19, 2017 ... as its vendor landscape is marked by the presence ... market is however held by five major players - ... Together these companies accounted for nearly 61% of the ... the leading companies in the global military biometrics market ...
(Date:4/11/2017)... PALM BEACH GARDENS, Fla. , April 11, ... biometric identity management and secure authentication solutions, today ... million contract by Intelligence Advanced Research Projects Activity ... technologies for IARPA,s Thor program. "Innovation ... the onset and IARPA,s Thor program will allow ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and ... San Diego Rotary Club. The event entitled “Stem Cells and Their ... 300+ attendees. Dr. Harman, DVM, MPVM was joined by two human doctors: Peter ...
(Date:10/10/2017)... CRUZ, Calif. , Oct. 10, 2017 ... grant from the NIH to develop RealSeq®-SC (Single Cell), ... kit for profiling small RNAs (including microRNAs) from single ... Analysis Program highlights the need to accelerate development of ... "New techniques for measuring ...
(Date:10/10/2017)... ... 2017 , ... The Pittcon Program Committee is pleased to ... who have made outstanding contributions to analytical chemistry and applied spectroscopy. Each award ... conference and exposition for laboratory science, which will be held February 26-March 1, ...
(Date:10/9/2017)... ... 09, 2017 , ... The award-winning American Farmer television series will feature 3 ... airs Tuesdays at 8:30aET on RFD-TV. , With global population estimates nearing ten ... to continue to feed a growing nation. At the same time, many of our ...
Breaking Biology Technology: