Navigation Links
First nanoscale image of soil reveals an 'incredible' variety, rich with patterns
Date:4/28/2008

A handful of soil is a lot like a banana, strawberry and apple smoothie: Blended all together, it is hard to tell what's in there, especially if you have never tasted the fruits before.

But when you look at soil's organic carbon closely, it has an incredible variety of known compounds. And looking closely is exactly what Cornell researchers have done for the first time -- at a scale of 50 nanometers (1 nanometer equals the width of three silicon atoms). Until now, handfuls of soil humus (or the organic component of soil, formed by the decomposition of leaves and other plant material by soil microorganisms) looked remarkably similar.

According to a study published in the April issue of Nature Geoscience, knowing the structure and detailed composition of soil carbon could provide a better understanding of the chemical processes that cycle organic matter in soil. For example, the research may help scientists understand what happens when materials in the soil get wet, warm or cool and how soils sequester carbon, which has implications for climate change.

"There is this incredible nanoscale heterogeneity of organic matter in terms of soil," said Johannes Lehmann, a Cornell associate professor of crop and soil sciences and lead author of the study.

"None of these compounds that you can see on a nanoscale level looks anything close to the sum of the entire organic matter."

The soil measurements (actually, images produced by a highly focused X-ray beam) were made at the National Synchrotron Light Source at Brookhaven National Laboratory using an X-ray spectromicroscopy method developed by physicists at the State University of New York, Stony Brook. The method allowed the researchers to identify forms of organic carbon in the samples.

While the composition of organic carbon in soils from North America, Panama, Brazil, Kenya or New Zealand proved remarkably similar within each sample, the researchers found that within spaces separated by mere micrometers, soils from any of these locations showed striking variation in their compositions. For example, the compounds that "hang on the right and left of a clay mineral may be completely different," said Lehmann.

The researchers were also able to identify the origins of some of the nano-sized compounds, determining that some of them, for example, were microbe excretions and decomposed leaves.

The researchers also recognized patterns of where types of compounds are likely to be found at the nanoscale.

"Now we can start locating certain compounds," Lehmann said. "We find black carbon as distinct particles in pores, whereas we find microbial products smeared around surfaces of minerals."

The method now allows researchers to break soil down, separate compounds, conduct experiments on individual compounds and better understand the interactions, Lehmann said.


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University Communications
Source:Eurekalert

Related biology news :

1. And the first animal on Earth was a ...
2. First draft of transgenic papaya genome yields many fruits
3. UC biology prof traces his roots to the first Earth Day
4. Research identifies first method for testing, assessing drug treatments for Chagas disease
5. Lincoln Park Zoo launches first-of-its-kind wildlife reintroduction database
6. And the first animal on Earth was a...
7. Geneticist Francis Collins named first recipient of Inamori Ethics Prize at Case Western Reserve
8. First diagnostic test for Alzheimers and Parkinsons disease on the horizon
9. Childrens Hospital leads projects to develop nations first heart assist devices for young children
10. First rule of evolution suggests that life is destined to become more complex
11. Scientists launch first comprehensive database of human oral microbiome
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... and BANGALORE, India , April 28, 2016 ... a product subsidiary of Infosys (NYSE: INFY ), ... a global partnership that will provide end customers ... mobile banking and payment services.      (Logo: ... innovation area for financial services, but it also plays a ...
(Date:4/26/2016)... and LONDON , April ... part of EdgeVerve Systems, a product subsidiary of ... today announced a partnership to integrate the Onegini ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... their customers enhanced security to access and transact ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Raleigh, NC (PRWEB) , ... June 27, 2016 ... ... a mission to bring innovative medical technologies, services and solutions to the healthcare ... development and implementation of various distribution, manufacturing, sales and marketing strategies that are ...
(Date:6/24/2016)... on a range of subjects including policies, debt and investment ... Speaking at a lecture to the Canadian Economics ... the country,s inflation target, which is set by both the ... "In certain areas there needs to be frequent ... not sit down and address strategy together?" He ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, ... second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical ... eBook by providing practical tips, tools, and strategies for clinical researchers. , “The ...
(Date:6/23/2016)... 2016 A person commits a crime, and the ... track the criminal down. An outbreak of foodborne ... Administration (FDA) uses DNA evidence to track down the bacteria ... far-fetched? It,s not. The FDA has increasingly used a complex, ... foodborne illnesses. Put as simply as possible, whole genome sequencing ...
Breaking Biology Technology: