Navigation Links
First-ever covalent irreversible inhibition of a protease central to hepatitis C infection

WALTHAM, MA November 28, 2010 Avila Therapeutics, Inc., a biotechnology company developing novel targeted covalent drugs, has published research in Nature Chemical Biology demonstrating the first-ever selective irreversible inhibition of a viral protease using a targeted covalent drug. In the paper titled "Selective Irreversible Inhibition of a Protease by Targeting a Non-Catalytic Cysteine", Avila used its proprietary Avilomics platform to design covalent irreversible protease inhibitors that are highly selective, potent and with superior duration of action as compared to conventional protease inhibitors.

Importantly, the published research demonstrates that covalent drugs can be designed and targeted to irreversibly and covalently bond to molecular domains specific to proteases. This is the first report of the irreversible covalent approach being successfully extended to proteases, a very broad class of proteins that includes many important potential drug targets.

"This research elevates covalent drug design to a fundamentally new level," said Simon Campbell, PhD, CBE, FMedSci, FRS, a renowned scientist and former Senior Vice President for Worldwide Drug Discovery and Medicinal R&D Europe of Pfizer. "By creating extremely selective protease inhibitors with their platform, Avila is showing the remarkable therapeutic potential of irreversible covalent drugs to address a broad spectrum of drug targets."

"This publication showcases the creation of a whole new class of small molecule drugs," said Juswinder Singh, PhD, Chief Scientific Officer of Avila and a co-author of the paper. "This approach can make a difference to patients living with HCV infection, and we expect to make an impact in other important areas such as cancer and inflammatory disease."

In order to maximize selectivity and minimize off-target effects, the irreversible covalent inhibitors of HCV protease were designed to covalently target a unique structure in the HCV protease not found in human proteases. Key findings include:

  • A representative irreversible covalent inhibitor designed, by Avila, was shown to inhibit the HCV protease (also known as "NS3") in cells at a concentration of 6 nM .
  • Specific covalent bond formation between the drug and target protease was demonstrated through use of mass spectrometry and also x-ray crystallography.
  • Very high selectivity of the Avila compounds was demonstrated by showing no notable inhibition of a panel of human proteases in biochemical assays with additional specificity demonstrated in cellular assays; this was contrasted experimentally with Telaprevir, an HCV protease inhibitor in late-stage clinical testing which demonstrated off-target biochemical activity against several human targets.

Avila has subsequently optimized additional drug candidates, yielding current development candidates, AVL-181 and AVL-192, which have excellent pharmacokinetics and bind potently to wild- type HCV protease as well as multiple genotypes and mutant forms of HCV protease.


Contact: Kathryn Morris
Yates Public Relations

Related biology news :

1. First-ever blueprint of a minimal cell is more complex than expected
2. UBC researchers find first-ever wanderlust gene in tiny bony fish
3. Afghanistan releases its first-ever list of protected species
4. UBC researcher gives first-ever estimate of worldwide fish biomass and impact on climate change
5. First-ever socioeconomic study on coral reefs points to challenges of coastal resource management
6. New clues to how cancer-related proteins plasmin, thrombin lose inhibition
7. Gene signal GS-101 data shows safe and effective inhibition of ophthalmic blood vessel growth
8. HIV-1 protease inhibitor induced oxidative stress in pancreatic B-cells: thymoquinone protection
9. Researchers describe protease inhibitor that may aid in diabetic retinopathy treatment
10. New regional facility opened to advance stable isotope research in central Appalachians
11. Barrow scientists uncover clues on inflammation in central nervous system
Post Your Comments:
(Date:6/2/2016)... LONDON , June 2, 2016 ... has awarded the 44 million US Dollar project, ... Security Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... world leader in the production and implementation of Identity Management ... in January, however Decatur was selected ...
(Date:5/24/2016)... facilitates superior patient care by providing unparalleled technology to leaders of the medical imaging ... product recently added to the range of products distributed by Ampronix. Photo ... ... ... News ...
(Date:5/9/2016)... DUBAI , UAE, May 9, 2016 ... choice when it comes to expanding freedom for high ... Even in today,s globally connected world, there ... online conferencing system could ever duplicate sealing your deal ... are obtaining second passports by taking advantage of citizenship ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 2016 , ... In a new case report published today in STEM CELLS ... developed lymphedema after being treated for breast cancer benefitted from an injection of stem ... with this debilitating, frequent side effect of cancer treatment. , Lymphedema refers ...
(Date:6/23/2016)... 2016  Blueprint Bio, a company dedicated to identifying, ... community, has closed its Series A funding round, according ... "We have received a commitment from Forentis Fund ... to meet our current goals," stated Matthew Nunez ... to complete validation on the current projects in our ...
(Date:6/23/2016)... -- On Wednesday, June 22, 2016, the NASDAQ ... Dow Jones Industrial Average edged 0.27% lower to finish at ... has initiated coverage on the following equities: Infinity Pharmaceuticals ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ARLZ ... Learn more about these stocks by accessing their free trade ...
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory Compliance ... consulting, provides a free webinar on Performing Quality Investigations: Getting to ... 12pm CT at no charge. , Incomplete investigations are still a major concern ...
Breaking Biology Technology: