Navigation Links
'Fingerprinting' method tracks mercury emissions from coal
Date:10/8/2008

ANN ARBOR, Mich.---University of Michigan researchers have developed a new tool that uses natural "fingerprints" in coal to track down sources of mercury polluting the environment.

The research is published in today's online issue of the journal Environmental Science & Technology.

Mercury is a naturally occurring element, but some 2000 tons of it enter the environment each year from human-generated sources such as incinerators, chlorine-producing plants and coal-burning power plants. Mercury is deposited onto land or into water, where microorganisms convert some of it to methylmercury, a highly toxic form that builds up in fish and the animals that eat them. In wildlife, exposure to methylmercury can interfere with reproduction, growth, development and behavior and may even cause death.

Effects on humans include damage to the central nervous system, heart and immune system. The developing brains of young and unborn children are especially vulnerable.

"There has been a lot of controversy about how much mercury is coming from different types of industrial activities, compared to natural sources, but it has been difficult to figure out the relative contributions," said co-author Joel Blum, the John D. MacArthur Professor of Geological Sciences and a professor of ecology and evolutionary biology. "And even if you can determine how much of it is coming from natural versus human sources, there's still the question of how much is from global sources, such as coal-fired power plants overseas, and how much is being produced and deposited locally."

For the past eight years, Blum and co-workers have been trying to develop a way of reading mercury fingerprints in coal and other sources of mercury. The hope was that they could then find those same fingerprints in soil and water bodies, much as a detective matches a suspect's fingerprints to those found at a crime scene, and use them to figure out exactly what the sources of mercury pollution are in certain areas.

"For some time, we weren't sure that it was going to be technically possible, but now we've cracked that nut and have shown significant differences not only between mercury from coal and, say, metallic forms of mercury that are used in industry, but also between different coal deposits," Blum said.

The fingerprinting technique relies on a natural phenomenon called isotopic fractionation, in which different isotopes (atoms with different numbers of neutrons) of mercury react to form new compounds at slightly different rates. In one type of isotopic fractionation, mass-dependent fractionation (MDF), the differing rates depend on the masses of the isotopes. In mass-independent fractionation (MIF), the behavior of the isotopes depends not on their absolute masses but on whether their masses are odd or even. Combining mass-dependent and mass-independent isotope signals, the researchers created a powerful fingerprinting tool.

Previously, Blum and coworkers investigated the possibility of using the method to identify sources of mercury contamination in fish. The coal project was more challenging because of the difficulty of extracting and concentrating mercury from coal. The researchers developed a system that slowly burns the coal under controlled conditions in a series of furnaces and then traps the mercury that is released.

More work is needed to perfect the fingerprinting technique, but Blum envisions using it in a number of ways to track mercury and assess its environmental effects.

"Coal-burning plants are being built in China at an alarming rate---something like two per week---and the amount of mercury emitted to the atmosphere is increasing dramatically. We think we may be able to detect mercury coming from specific regions in China and watch it as it's transported and re-deposited around the globe," Blum said.

Closer to home, a number of coal-burning power plants have been proposed for construction in Michigan, and one question that arises during the permitting process is how much mercury may end up in nearby lakes and wetlands.

"Scientists have models and other ways of estimating how much mercury will be deposited locally, but we may, for the first time, be able to directly differentiate between mercury coming from local plants and mercury that has been transported longer distances."

In a project already underway, Blum's research group hopes to pinpoint which of the many mercury sources in the San Francisco Bay area are contributing most to the contamination of fish and wildlife.

"We don't know whether particular sources of mercury are more biologically available than others and thus more likely to accumulate in animals," Blum said. "If we can figure that out, then we can help local agencies decide where efforts will be most productive in terms of preventing wildlife from being exposed to mercury."

A major influence on Blum's research path into mercury isotopes was Clair Patterson, a famous geochemist on the faculty at Caltech when Blum was a graduate student there. Patterson developed and applied the lead isotopic fingerprinting technique to show the world that unhealthy levels of lead in humans could be traced to lead additives in gasoline. His work ultimately led to the removal of lead from gasoline in the U.S.

"The approach we are taking is similar to what Patterson did with lead isotopes, except the isotopic differences in mercury are about 50 times smaller," Blum said. "If we can do a tenth of what he did, in terms of alerting people to where mercury is coming from and how people are being exposed, I'll be thrilled."


'/>"/>

Contact: Nancy Ross-Flanigan
rossflan@umich.edu
734-647-1853
University of Michigan
Source:Eurekalert

Related biology news :

1. Kount Receives Patent for Device Fingerprinting
2. DNA fingerprinting simplified
3. Deep biosphere research points to new methods for recovering petroleum
4. New lab manual focuses on essential methods for purifying and characterizing proteins
5. UC Riverside biochemists devise method for bypassing aluminum toxicity effects in plants
6. Commercial aquatic plants offer cost-effective method for treating wastewater
7. Radioactivity: Discover the lowest amounts with new methods
8. New method identifies meth hot spots
9. Scientists develop new method to investigate origin of life
10. Biophysical method may help to recover hearing
11. LSUHSC research reports new method to protect brain cells from diseases like Alzheimers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... LONDON , April 6, 2017 ... Control, RFID, ANPR, Document Readers, by End-Use (Transportation & ... Energy Facility, Oil, Gas & Fossil Generation Facility, Nuclear ... Healthcare, Educational, Other) Are you looking for ... Authentication sector? ...
(Date:4/5/2017)... , April 5, 2017 Today HYPR ... that the server component of the HYPR platform is ... providing the end-to-end security architecture that empowers biometric authentication ... HYPR has already secured over 15 million users across ... manufacturers of connected home product suites and physical access ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
Breaking Biology News(10 mins):
(Date:4/26/2017)... Pa. , April 26, 2017  Genisphere ... delivery platform, has signed a collaborative and sponsored ... Dr. Silvia Muro . The overall goal ... and pharmacodynamics of various 3DNA designs and formulations ... involve targeting diseases of the vasculature as well ...
(Date:4/25/2017)... CA (PRWEB) , ... April 25, 2017 , ... ... of L3 Healthcare, is pleased to announce the company is now a certified ... The iMedNet software certification enables the company’s clinical research team to build, ...
(Date:4/25/2017)... Gatos, California (PRWEB) , ... April 25, 2017 ... ... business, Analytical Services and Metrology Partners.     , Covalent’s Analytical Services unit ... Most samples can be measured within 24 hours of receipt. There are no ...
(Date:4/24/2017)... 2017  Dante Labs announced today the offer of whole ... $900). While American individuals have been able to access WGS ... access WGS below EUR 1,000. The sequencing includes ... information to make informed decisions about disease monitoring, prevention, nutrition, ... ...
Breaking Biology Technology: