Navigation Links
Fine-scale climate model projections predict malaria at local levels
Date:7/2/2014

Fine-scale climate model projections suggest the possibility that population centers in cool, highland regions of East Africa could be more vulnerable to malaria than previously thought, while population centers in hot, lowland areas could be less vulnerable, according to a team of researchers. The team applied a statistical technique to conventional, coarse-scale climate models to better predict malaria dynamics at local levels.

"People might have an interest in predictions for global malaria trends and even more so for regional patterns, but they probably care most about what's going to happen in their own town or village," said Matthew Thomas, professor and Huck Scholar in Ecological Entomology, Penn State. "We found that malaria predictions using global climate model simulation results don't necessarily tell you what's going to happen at a specific location. What is likely to happen in one location can be very different from another location just 50 miles down the road. To really understand the impact of climate change on malaria dynamics we need to adopt a higher-resolution approach."

According to Krijn Paaijmans, assistant research professor, Barcelona Centre for International Health Research, the ability of mosquitoes to transmit malaria is strongly influenced by environmental temperature.

"Malaria mosquitoes are ectothermic organisms, which means that their body temperature matches the temperature of their direct surroundings," Paaijmans said.

The scientists examined how changes in temperature due to future climate warming might impact the potential for mosquitoes to transmit malaria. The researchers compared malaria transmission at four sites in Kenya that differed in their baseline environmental characteristics -- two sites were cool upland locations, a third site was a warm lower-altitude site and a fourth site was a hot savannah-like environment. The team used a statistical technique to "downscale" projections from conventional global climate models -- specifically, projections from atmosphere-ocean global climate models (AOGCMs), which evaluate temperature on coarse spatial and temporal scales -- to generate high-resolution, daily temperature data.

"Statistical downscaling takes historically observed relationships between the large-scale atmospheric state and a local climate response, and applies them to global climate model projections," said Robert Crane, professor of geography, Penn State. "We applied the downscaling methodology to the climate model projections."

The team's goal was to predict malaria transmission potential within the four locations. They used a simple mathematical model that describes the influence of temperature on the ability of adult mosquitoes to transmit malaria parasites to compare the predictions they obtained in the four locations with the predictions from the coarse-scale model simulations.

"Fine-scale predictions of malaria risk will be better tailored to the needs of local communities and can improve local adaptation and mitigation strategies," Paaijmans said.

The results appear in the June 19 issue of Climatic Change.

The team found that the conventional approach of using coarse-scale climate models yielded different predictions for future changes in malaria transmission potential in the four locations than when they applied the downscaling methodology.

"Using the raw coarse-scale model simulation results sometimes overestimated and sometimes underestimated the effects of climate change for particular locations compared with our downscaled model results," Thomas said.

Specifically, the team's downscaled model results predicted large increases in future malaria transmission potential in the cool upland sites, but reduced transmission in the hot savannah-like site. The results also predicted an increase in transmission potential in the warm lower-altitude site, but the increase was less pronounced when using the downscaling methodology than when using the conventional models. According to the researchers, the warm lower-altitude site is characterized by relatively consistent, year-round transmission, so even modest increases in transmission potential may translate into measurable changes in disease risk.

"This is one of the first studies to attempt to explore how climate change might impact conditions at the local level," said Michael Mann, Distinguished Professor of Meteorology, Penn State. "The results suggest the possibility that population centers in cool highland regions could be more vulnerable than previously thought, while other equally large lowland areas might be less vulnerable. But this would have to be confirmed with more detailed modeling assessments that take into account the full suite of environmental and socio-economic factors that ultimately determine risk of malaria."


'/>"/>

Contact: A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481
Penn State
Source:Eurekalert

Related biology news :

1. Fine-scale analysis of the human brain yields insight into its distinctive composition
2. Putting a price tag on the 2° climate target
3. Study: To address climate change, nothing substitutes for reducing CO2 emissions
4. Climate change and the ecology of fear
5. Capturing CO2 emissions needed to meet climate targets
6. A win-win-win solution for biofuel, climate, and biodiversity
7. New study quantifies the effects of climate change in Europe
8. Restricting competitors could help threatened species cope with climate change
9. Botany: Leafing out and climate change
10. Increase in the use of biofuels the most cost-effective way for Finland to achieve the goals of the EUs 2030 Climate and Energy Package
11. Discovery of a bud-break gene could lead to trees adapted for a changing climate
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... 24, 2017 The Controller General of Immigration from ... Abdulla Algeen have received the prestigious international IAIR Award for the ... Continue Reading ... ... Controller Abdulla Algeen (small picture on the right) have received the IAIR ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based ... to 2022", published by MarketsandMarkets, the market is expected to be worth USD ... 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. ... Cancer Research, London (ICR) and University ... SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma ... MUK nine . The University of Leeds ... partly funded by Myeloma UK, and ICR will perform the ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... 10, 2017 International research firm Parks Associates announced ... at the TMA 2017 Annual Meeting , October 11 in ... residential home security market and how smart safety and security products impact ... Parks Associates: Smart Home ... "The residential security market has ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
Breaking Biology Technology: