Navigation Links
Finding about classic suppressor of immunity points toward new therapies for bad infections
Date:1/7/2014

AUGUSTA, Ga. - A well-documented suppressor of immunity that's used by fetuses and tumors alike, just may be able to change its spots, researchers report.

In the face of a significant bacterial infection, for example, indoleomine 2,3-dioxegenase, or IDO, also appears capable of helping key immune cells called macrophages produce inflammation to destroy the invader, said Dr. Tracy L. McGaha, immunologist at the Medical College of Georgia at Georgia Regents University and GRU Cancer Center.

The surprising finding points toward new therapeutic targets when inflammation goes overboard, known as a cytokine storm, as with the overwhelming and highly lethal infection septicemia.

"It's always described as a one-way street, but it appears IDO has a dual role," said McGaha, corresponding author of the study in the journal Molecular and Cellular Biology. "It promotes inflammation when it needs to and, where there is no need for classic inflammation, it can immediately switch to a suppressant mechanism," McGaha said.

IDO's upregulation in macrophages helps these immune cells make important decisions about whether to ignore or attack. "It just depends on the environment the cell finds itself in," McGaha said. He and others also are showing that macrophages, well-documented garbage consumers in the body, have this larger role as well as a driver of the immune response.

While studying more about IDO's role in modulating macrophages response to cell debris, McGaha and his colleagues found that when they added a piece of a bacterial cell wall to prompt an inflammatory reaction, they found an increased number of IDO-expressing macrophages in the mix, which seemed counterintutitive considering IDO's role as a suppressor, McGaha said.

That's how they learned IDO actually does both. IDO basically works by degrading the essential amino acid tryptophan, producing a stress response in the now-starving cell that prompts an increase in the stress response kinase GCN2, which essentially shuts down protein production and cell activity. Unless there is another stressor, which is what happened when the researchers added the bacterial cell wall.

In this infection model, high levels of GCN2 appear instead to nudge macrophages to make more pro-inflammatory mediators, resulting in rampant inflammation in the mice. In this environment, gene activity goes up to the point that the previously sluggish protein production is revived. "The overall affect is you get more inflammation," McGaha said.

And that's where potential new therapies for selectively blocking inflammation surfaced. When they knocked out GCN2, severe inflammation decreased and survival increased in animal models of septicemia. McGaha hopes the laboratory findings will eventually translate to hospital intensive care units.

"Macrophages can do a lot of things and only one of them is make inflammatory products, like cytokines, in response to infection," McGaha said. "They also are involved in wound healing and tissue reconstitution maitenance. So if a macrophage comes into an area that has a lot of mechanical damage, say from trauma, you don't want to make proinflammatory things because that will hurt the ability of the tissue to heal itself."

The good news is that drugs that block GCN2 already are under development to fight cancer and agonists exist that could bolster a positive immune response, such as increasing the potency of a vaccine, McGaha said. "If we can manipulate GCN2's activity in various contexts, we can help finetune the immune response in the direction we want."

Next steps including looking at how GCN2 manipulates immunity, particularly its impact on protein production.

MCG's Drs. Andrew Mellor and David Munn were the first to report that the fetus expresses IDO to help avoid rejection by the mother's immune system. Subsequent studies have shown tumors also use IDO for protection and clinical trials are studying the tumor-fighting potential of an IDO inhibitor. On the flip side, there is evidence that increasing IDO expression can protect transplanted organs and counter autoimmune disease. Mellor and Munn are co-authors on the new study, which was supported in part by the National Institutes of Health and Wellcome Trust.


'/>"/>

Contact: Toni Baker
tbaker@gru.edu
706-721-4421
Medical College of Georgia at Georgia Regents University
Source:Eurekalert  

Related biology news :

1. UMD finding may hold key to Gaia hypothesis
2. ACRG and BGI report findings from genomics research on recurrent hepatitis B virus integration
3. Blue Ribbon Panel unveils findings on logistical improvements to support Antarctic science
4. BGI reports the latest finding on NMNAT1 mutations linked to Leber congenital amaurosis
5. Team discovers reason that male moths can keep finding females
6. Finding new research frontiers in a single cell
7. New findings on protein misfolding
8. One click away: Finding data on Floridas endangered species just got easier
9. Finding triggers of birth defects in an embryo heart
10. New findings on gene regulation and bone development
11. Verinata Health Announces New Findings At The American Society Of Human Genetics
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Finding about classic suppressor of immunity points toward new therapies for bad infections
(Date:4/19/2016)... DUBAI , UAE, April 20, 2016 ... can be implemented as a compact web-based "all-in-one" system ... in the biometric fingerprint reader or the door interface ... requirements of modern access control systems. The minimal dimensions ... the ID readers into the building installations offer considerable ...
(Date:4/14/2016)... Israel , April 14, 2016 ... Authentication and Malware Detection, today announced the appointment of ... assumed the new role. Goldwerger,s leadership appointment ... on the heels of the deployment of its platform ... BioCatch,s behavioral biometric technology, which discerns unique cognitive and ...
(Date:3/31/2016)... PROVIDENCE, R.I. , March 31, 2016  Genomics ... leadership of founding CEO, Barrett Bready , M.D., ... addition, members of the original technical leadership team, including ... Vice President of Product Development, Steve Nurnberg and Vice ... have returned to the company. Dr. Bready ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... ... Amgen, will join the faculty of the University of North Carolina Kenan-Flagler ... of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s ...
(Date:6/24/2016)... -- Regular discussions on a range of subjects including policies, debt ... said Poloz. Speaking at a lecture to the ... pointed to the country,s inflation target, which is set by ... "In certain areas there needs to ... goals, why not sit down and address strategy together?" ...
(Date:6/24/2016)... ... 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona ... or pleural mesothelioma. Their findings are the subject of a new article on the ... are signposts in the blood, lung fluid or tissue of mesothelioma patients that can ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
Breaking Biology Technology: