Navigation Links
Fighting cancers by tagging their triggers
Date:9/30/2010

Imagine the day a machine can draw your blood, screen it for genetic mutations and chemical variations that can cause cancer, and pop out a drug tailor-made for your DNA.

That hypothetical drug would target and fix - the point irregularities which have accumulated over time that can lead to the formation of tumors and cancer.

The National Institutes of Health has tapped Viterbi professor Andrea Armani to develop a key instrument that takes researchers a step closer to realizing this vision.

"Personalized cancer drug delivery? Depending on the approach, it could be as soon as 10 to 15 years away," says Armani, an assistant professor of the Mork Family Department of Chemical Engineering and Materials Science.

Armani has received the NIH's 2010 New Innovator Award, which recognizes a select group of researchers with "exceptional creativity" and bold approaches that "have the potential to produce a major impact on broad, important problems in biomedical and behavioral research."

The award amounts to a $2.3 million research grant over five years to investigate epigenetics. This field studies changes in DNA which are associated with cancer.

Analysis of these DNA changes has shown promise in the early detection and treatment of ovarian and other types of cancer, says Armani.

But current research methods are only able to capture snapshots of these DNA changes, instead of monitoring the process continuously. Therefore, they miss information that could be vital to understanding processes that have been linked to cancer and other diseases, like Huntington's and diabetes.

The sensitivity or resolution of many of these techniques is also very poor. "It's like trying to watch a TV show through static," says Armani.

Her method will push the field straight to High-Definition.

Armani proposes to develop an ultrasensitive nanolaser that would allow her to detect changes in DNA as they're happening in real-time. This device will also allow her to study a single DNA strand in isolation, rather than groups of hundreds to thousands of strands as researchers must do with current technology.

As DNA binds to the surface of the nanolaser, the "color" or lasing wavelength emitted by the laser will change. As the DNA changes, the color will change again. The improved resolution is a result of the precision with which the color can be monitored.

The first part of the project focuses on building the nanolaser instrument, while the second half funds the DNA experiments.

The goal? What Armani calls "un-doing" these triggers that can cause cancer.

She will focus first on using the nanolaser to perform initial proof-of-concept experiments using known triggers, such high concentrations of common solvents and cleaning agents.

Part of this process involves taking a single strand of DNA, exposing it to a harsh chemical and seeing whether a specific change is initiated. Ultimately she'd like to be able to warn people which triggers to avoid.


'/>"/>

Contact: Eric Mankin
mankin@usc.edu
213-821-1887
University of Southern California
Source:Eurekalert  

Related biology news :

1. New infrared light may open new frontier in fighting cancer, Tay Sachs
2. U of Alberta researchers discover important mechanism in fighting infection
3. In the ring: Researchers fighting bacterial infections zero in on microorganisms soft spots
4. Symposium spotlights new paradigms in genomics, celebrates AIDS-fighting drug at 25 years
5. Fighting fungal infections with bacteria
6. UT Southwestern researchers identify key molecular step to fighting off viruses
7. Carbon nanotubes boost cancer-fighting cells
8. New cancer-fighting strategy focuses on signaling molecules
9. Fighting IED attacks with SCARE technology
10. Fighting sleep, Penn researchers reverse the cognitive impairment caused by sleep deprivation
11. Diabetes drug shows promise in fighting lethal cancer complication
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Fighting cancers by tagging their triggers
(Date:4/6/2017)... LONDON , April 6, 2017 ... Control, RFID, ANPR, Document Readers, by End-Use (Transportation & ... Energy Facility, Oil, Gas & Fossil Generation Facility, Nuclear ... Healthcare, Educational, Other) Are you looking for ... Authentication sector? ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC ... announced that the United States Patent and Trademark Office ... broadly covers the linking of an iris image with ... transaction) and represents the company,s 45 th issued ... patent is very timely given the multi-modal biometric capabilities ...
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities and ... and behavioral), by technology (fingerprint, AFIS, iris recognition, facial ... and others), by end use industry (government and law ... financial and banking, and others), and by region ( ... , Asia Pacific , and the ...
Breaking Biology News(10 mins):
(Date:5/18/2017)... ... 17, 2017 , ... G-CON Manufacturing, Inc., the leader in ... Jornitz, was recognized as a Top 10 Industry Influencer on The Medicine Maker’s ... bettering the pharma industry and bringing life-changing medicines to market” across four categories. ...
(Date:5/18/2017)... (PRWEB) , ... May 18, 2017 , ... When James Sherley, was notified earlier this ... Most Valuable Brands for the Year 2017 by The Silicon Review , he was ... making good progress increasing Asymmetrex’s value, but this recognition by Silicon Valley was particularly meaningful. ...
(Date:5/16/2017)... ... May 16, 2017 , ... ... Hi-C metagenomic deconvolution service. ProxiMeta enables researchers to obtain complete, distinct genomes ... insights at lower cost. , “We’re very excited about the commercial launch ...
(Date:5/16/2017)... ... May 16, 2017 , ... ... diagnostics, has released its ClearID Lung Cancer blood test. Leveraging a highly-sensitive next-generation ... new test is designed to quickly and accurately identify tumor-related genetic mutations that ...
Breaking Biology Technology: