Navigation Links
Fighting cancers by tagging their triggers
Date:9/30/2010

Imagine the day a machine can draw your blood, screen it for genetic mutations and chemical variations that can cause cancer, and pop out a drug tailor-made for your DNA.

That hypothetical drug would target and fix - the point irregularities which have accumulated over time that can lead to the formation of tumors and cancer.

The National Institutes of Health has tapped Viterbi professor Andrea Armani to develop a key instrument that takes researchers a step closer to realizing this vision.

"Personalized cancer drug delivery? Depending on the approach, it could be as soon as 10 to 15 years away," says Armani, an assistant professor of the Mork Family Department of Chemical Engineering and Materials Science.

Armani has received the NIH's 2010 New Innovator Award, which recognizes a select group of researchers with "exceptional creativity" and bold approaches that "have the potential to produce a major impact on broad, important problems in biomedical and behavioral research."

The award amounts to a $2.3 million research grant over five years to investigate epigenetics. This field studies changes in DNA which are associated with cancer.

Analysis of these DNA changes has shown promise in the early detection and treatment of ovarian and other types of cancer, says Armani.

But current research methods are only able to capture snapshots of these DNA changes, instead of monitoring the process continuously. Therefore, they miss information that could be vital to understanding processes that have been linked to cancer and other diseases, like Huntington's and diabetes.

The sensitivity or resolution of many of these techniques is also very poor. "It's like trying to watch a TV show through static," says Armani.

Her method will push the field straight to High-Definition.

Armani proposes to develop an ultrasensitive nanolaser that would allow her to detect changes in DNA as they're happening in real-time. This device will also allow her to study a single DNA strand in isolation, rather than groups of hundreds to thousands of strands as researchers must do with current technology.

As DNA binds to the surface of the nanolaser, the "color" or lasing wavelength emitted by the laser will change. As the DNA changes, the color will change again. The improved resolution is a result of the precision with which the color can be monitored.

The first part of the project focuses on building the nanolaser instrument, while the second half funds the DNA experiments.

The goal? What Armani calls "un-doing" these triggers that can cause cancer.

She will focus first on using the nanolaser to perform initial proof-of-concept experiments using known triggers, such high concentrations of common solvents and cleaning agents.

Part of this process involves taking a single strand of DNA, exposing it to a harsh chemical and seeing whether a specific change is initiated. Ultimately she'd like to be able to warn people which triggers to avoid.


'/>"/>

Contact: Eric Mankin
mankin@usc.edu
213-821-1887
University of Southern California
Source:Eurekalert  

Related biology news :

1. New infrared light may open new frontier in fighting cancer, Tay Sachs
2. U of Alberta researchers discover important mechanism in fighting infection
3. In the ring: Researchers fighting bacterial infections zero in on microorganisms soft spots
4. Symposium spotlights new paradigms in genomics, celebrates AIDS-fighting drug at 25 years
5. Fighting fungal infections with bacteria
6. UT Southwestern researchers identify key molecular step to fighting off viruses
7. Carbon nanotubes boost cancer-fighting cells
8. New cancer-fighting strategy focuses on signaling molecules
9. Fighting IED attacks with SCARE technology
10. Fighting sleep, Penn researchers reverse the cognitive impairment caused by sleep deprivation
11. Diabetes drug shows promise in fighting lethal cancer complication
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Fighting cancers by tagging their triggers
(Date:11/17/2016)... 17, 2016  AIC announces that it has just released a new white paper ... high-performance scale-out plus high speed data transfer storage solutions. Photo - ... ... ... Setting up a high performance computing or HPC ...
(Date:11/14/2016)... Inc. ("xG" or the "Company") (Nasdaq: XGTI, XGTIW), a ... challenging operating environments, announced its results for the third ... conference call to discuss these results on November 15, ... Key Recent Accomplishments The ... Vislink Communication Systems. The purchase is expected to close ...
(Date:6/22/2016)... 22, 2016   Acuant , the ... solutions, has partnered with RightCrowd ® ... Visitor Management, Self-Service Kiosks and Continuous Workforce ... add functional enhancements to existing physical access ... venues with an automated ID verification and ...
Breaking Biology News(10 mins):
(Date:12/7/2016)... ... December 07, 2016 , ... Huffman Engineering, Inc. , ... Wonderware Certified System Integrator Partner. Huffman Engineering is the only Nebraska-based company ... System Integrator Partner certification gives customers confidence that our engineers are fully trained ...
(Date:12/7/2016)... EDMONTON , Dec. 7, 2016 /PRNewswire/ - ... the development and commercialization of immunotherapeutic products for ... has entered into an Antibody Manufacturing Development Program ... , USA) for its oregovomab antibody product. ... its Phase IIb clinical study in ovarian cancer ...
(Date:12/7/2016)... Ontario , Dec. 7, 2016  Nordion, ... with General Atomics (GA), welcome today,s award by ... Nuclear Security Administration (NNSA) of the Phase II ... project with Nordion and the University of Missouri ... II funding will support the establishment of a ...
(Date:12/7/2016)... The report "Acrylic Processing Aid Market by Polymer Type (PVC), Fabrication Process (Extrusion, Injection Molding), ... 2026", published by MarketsandMarkets, the global market size was USD 645.4 Million in ... of CAGR of 6.2% between 2016 and 2026. ... ... , , ...
Breaking Biology Technology: