Navigation Links
Fighting cancers by tagging their triggers

Imagine the day a machine can draw your blood, screen it for genetic mutations and chemical variations that can cause cancer, and pop out a drug tailor-made for your DNA.

That hypothetical drug would target and fix - the point irregularities which have accumulated over time that can lead to the formation of tumors and cancer.

The National Institutes of Health has tapped Viterbi professor Andrea Armani to develop a key instrument that takes researchers a step closer to realizing this vision.

"Personalized cancer drug delivery? Depending on the approach, it could be as soon as 10 to 15 years away," says Armani, an assistant professor of the Mork Family Department of Chemical Engineering and Materials Science.

Armani has received the NIH's 2010 New Innovator Award, which recognizes a select group of researchers with "exceptional creativity" and bold approaches that "have the potential to produce a major impact on broad, important problems in biomedical and behavioral research."

The award amounts to a $2.3 million research grant over five years to investigate epigenetics. This field studies changes in DNA which are associated with cancer.

Analysis of these DNA changes has shown promise in the early detection and treatment of ovarian and other types of cancer, says Armani.

But current research methods are only able to capture snapshots of these DNA changes, instead of monitoring the process continuously. Therefore, they miss information that could be vital to understanding processes that have been linked to cancer and other diseases, like Huntington's and diabetes.

The sensitivity or resolution of many of these techniques is also very poor. "It's like trying to watch a TV show through static," says Armani.

Her method will push the field straight to High-Definition.

Armani proposes to develop an ultrasensitive nanolaser that would allow her to detect changes in DNA as they're happening in real-time. This device will also allow her to study a single DNA strand in isolation, rather than groups of hundreds to thousands of strands as researchers must do with current technology.

As DNA binds to the surface of the nanolaser, the "color" or lasing wavelength emitted by the laser will change. As the DNA changes, the color will change again. The improved resolution is a result of the precision with which the color can be monitored.

The first part of the project focuses on building the nanolaser instrument, while the second half funds the DNA experiments.

The goal? What Armani calls "un-doing" these triggers that can cause cancer.

She will focus first on using the nanolaser to perform initial proof-of-concept experiments using known triggers, such high concentrations of common solvents and cleaning agents.

Part of this process involves taking a single strand of DNA, exposing it to a harsh chemical and seeing whether a specific change is initiated. Ultimately she'd like to be able to warn people which triggers to avoid.


Contact: Eric Mankin
University of Southern California

Related biology news :

1. New infrared light may open new frontier in fighting cancer, Tay Sachs
2. U of Alberta researchers discover important mechanism in fighting infection
3. In the ring: Researchers fighting bacterial infections zero in on microorganisms soft spots
4. Symposium spotlights new paradigms in genomics, celebrates AIDS-fighting drug at 25 years
5. Fighting fungal infections with bacteria
6. UT Southwestern researchers identify key molecular step to fighting off viruses
7. Carbon nanotubes boost cancer-fighting cells
8. New cancer-fighting strategy focuses on signaling molecules
9. Fighting IED attacks with SCARE technology
10. Fighting sleep, Penn researchers reverse the cognitive impairment caused by sleep deprivation
11. Diabetes drug shows promise in fighting lethal cancer complication
Post Your Comments:
Related Image:
Fighting cancers by tagging their triggers
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
(Date:4/26/2016)... Research and Markets has announced ... 2016-2020"  report to their offering.  , ,     (Logo: ... analysts forecast the global multimodal biometrics market to ... period 2016-2020.  Multimodal biometrics is being ... the healthcare, BFSI, transportation, automotive, and government for ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting ... are setting a new clinical standard in telehealth thanks ... By leveraging the higi platform, IMPOWER patients can routinely ... pulse and body mass index, and, when they opt ... and convenient visit to a local retail location at ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... DIEGO , June 27, 2016  Sequenom, Inc. ... committed to enabling healthier lives through the development of ... Court of the United States ... courts that the claims of Sequenom,s U.S. Patent No. ... patent eligibility criteria established by the Supreme Court,s Mayo ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... medical technologies, services and solutions to the healthcare market. The company's primary focus ... distribution, manufacturing, sales and marketing strategies that are necessary to help companies efficiently ...
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
Breaking Biology Technology: