Navigation Links
Fighting bacteria's strength in numbers
Date:5/17/2012

Scientists at The University of Nottingham have opened the way for more accurate research into new ways to fight dangerous bacterial infections by proving a long-held theory about how bacteria communicate with each other.

Researchers in the University's School of Molecular Medical Sciences have shown for the first time that the effectiveness of the bacteria's communication method, a process called 'quorum sensing', directly depends on the density of the bacterial population. This work will help inform wider research into how to stop bacteria talking to each other with the aim of switching off their toxin production.

As some pathogenic organisms are increasingly resistant to traditional antibiotics, medical researchers around the world, including scientists at The University of Nottingham, are trying to find other ways of fighting infection. This new work involves using 'quorum quenching' compounds which interfere with bacterial signalling and disrupt their social lives.

Quorum sensing (QS) is the process by which bacteria communicate and co-operate using signal molecules which control, among other things, the production of toxins. QS is therefore an important factor in a number of bacterial species that cause serious infection in humans including Pseudomonas aeruginosa, a leading cause of death among cystic fibrosis sufferers, and MRSA which is a huge clinical problem in hospitals.

Leading the research at Nottingham, Dr Stephen Diggle said: "The fundamental assumption used to explain QS, is that the production of QS-controlled factors is not beneficial until a sufficient density of cells (a quorum) is present, and that the purpose of QS is to stimulate social behaviours only when high enough bacterial population densities are reached. For a pathogen this makes sense. Why produce toxins when there are not many cells around? Why not wait until a large number are present and coordinate production of toxin on mass which helps to overwhelm a host? This density assumption, upon which the entire QS field is based, has never been experimentally tested until now."

This ground-breaking research has just been published in the leading international journal, Proceedings of the National Academy of Sciences. It shows for the first time that cell density is an important factor in regulating QS in the opportunistic pathogen Pseudomonas aeruginosa. Using a combination of special growth media and molecular techniques, the work has shown that QS signalling occurs in low populations of cells but that there is no benefit to the bacteria of doing so. QS is therefore most useful to the bacteria at high cell densities.

A challenge for researchers in the future is to study this in more natural environments such as infections. Bacteria such as P. aeruginosa use QS to control toxin production and this new research helps to explain how certain infections can suddenly turn life threatening due to massive toxin release. This suggests that carefully controlling bacterial population density within infections could be helpful in avoiding toxin-related damage.


'/>"/>

Contact: Emma Rayner
emma.rayner@nottingham.ac.uk
44-115-951-5793
University of Nottingham
Source:Eurekalert  

Related biology news :

1. UCSB study finds physical strength, fighting ability revealed in human faces
2. Children distressed by family fighting have higher stress hormones
3. Wistar scientists find key to keeping killer T cells in prime shape for fighting infection, cancer
4. Fighting obesity and illness with a novel approach to nutrition
5. Fighting global warming offers growth and development opportunities
6. Novel lung cancer vaccine shows promise in fighting early-stage lung cancer
7. Rabbits on the back foot -- but naturally theyre fighting back
8. U-Iowa improves delivery of cancer-fighting molecules
9. Fighting the burden of mental disorders
10. Master gene that switches on disease-fighting cells identified by scientists
11. Georgia State researcher to use $1 million grant to improve computer models for fighting wildfires
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Fighting bacteria's strength in numbers
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
(Date:4/4/2017)... YORK , April 4, 2017   EyeLock ... today announced that the United States Patent and Trademark ... patent broadly covers the linking of an iris image ... same transaction) and represents the company,s 45 th ... latest patent is very timely given the multi-modal biometric ...
Breaking Biology News(10 mins):
(Date:7/17/2017)... ... July 17, 2017 , ... ... by a wide range of overlapping clinical features. The advancement of targeted next-generation ... field of NDD research and testing. , However, designing a custom panel ...
(Date:7/17/2017)... ... July 17, 2017 , ... Co-Diagnostics, ... developed and intends both to manufacture and sell reagents used for diagnostic tests, ... Market. , Headquartered in Sandy, Utah, Co-Diagnostics’ intellectual property and technologies are protected ...
(Date:7/16/2017)... (PRWEB) , ... July 16, 2017 , ... ... equipment and analytical instruments announced the launch of its new line of Rocking ... five rocking and waving shaker models (both analog and digital) for laboratory applications ...
(Date:7/15/2017)... ... July 15, 2017 , ... Cuvette manufacturer FireflySci has ... this time, the people at FFS have learned that their biggest asset was their ... are able to launch new products to meet the changing needs of scientists at ...
Breaking Biology Technology: