Navigation Links
Feast and famine on the abyssal plain

MOSS LANDING, CA Animals living on the abyssal plain, miles below the ocean surface, don't usually get much to eat. Their main source of food is "marine snow"a slow drift of mucus, fecal pellets, and body partsthat sinks down from the surface waters. However, researchers have long been puzzled by the fact that, over the long term, the steady fall of marine snow cannot account for all the food consumed by animals and microbes living in the sediment. A new paper by MBARI researcher Ken Smith and his colleagues shows that population booms of algae or animals near the sea surface can sometimes result in huge pulses of organic material sinking to the deep seafloor. In a few weeks, such deep-sea "feasts" can deliver as much food to deep-sea animals as would normally arrive over years or even decades of typical marine snow.

For over 20 years, Smith and his fellow researchers have studied animals living on the abyssal plain at Station Ma deep-sea research site about 220 kilometers (140 miles) off the Central California coast. The muddy seafloor at Station M4,000 meters (13,100) feet below the surfaceis home to a variety of deep-sea animals, from sea cucumbers and sea urchins to grenadier fish. In addition, a myriad of smaller animals and microbes live buried within the mud.

Researchers have long wondered how all these animals and microbes get enough food to survive. The slow trickle of marine snow sinking down from above does not provide nearly enough food to support all the organisms that live down there. However, in a new paper in the Proceedings of the National Academy of Sciences, Smith and his coauthors show that occasional feasts could provide enough food to support deep-sea communities for years at a time.

Smith and his colleagues used several instruments to study the amount of marine snow arriving at Station M, as well as its impacts on life in the deep. They suspended conical "sediment traps" above the seafloor to collect and measure the amount of marine snow falling through the water. They also used automated camera systems to take time-lapse photographs of the seafloor. This allowed them to track the behavior, numbers, and sizes of larger deep-sea animals such as sea cucumbers. Finally, they used a seafloor-crawling robot, the Benthic Rover, to measure the amount of oxygen being consumed by animals and microbes in the sediment. Such oxygen measurements allowed the researchers to estimate how much food these organisms were consuming.

Using data from 1989 to 2012, Smith and his colleagues compared the amount of marine snow arriving at Station M with estimates of populations of microscopic algae observed at the surface using satellites. During most years, the amount of food arriving at the seafloor reached a yearly peak in summer and fall, but remained relatively low.

However, during 2011 and 2012, the researchers observed three dramatic events that delivered huge amounts of relatively fresh food to the deep seafloor. The first took place from June to August 2011, when large numbers of diatoms (a type of microscopic alga) bloomed near the surface, then sank rapidly to the seafloor.

The second event occurred from March to May 2012, when salpsgelatinous midwater animals that eat algaereproduced rapidly in surface waters. These salps became so abundant that they blocked the seawater intake of the Diablo Canyon nuclear power plant, located on the California coast east of Station M. When the salps in the surface waters at Station M died, they sank so quickly that they carpeted the seafloor, four kilometers below. During the third event, in September 2012, another algal bloom created so much dead algae that it clogged the researchers' sediment traps, but was captured by a time-lapse camera.

The excess food that arrived on the seafloor during these feasts was not wasted. Instead, it was rapidly consumed by deep-sea animals and seafloor microbes, which used it to grow and reproduce. Some of the organic carbon from the food was released into the surrounding seawater by respiration. Most of the rest was incorporated into the deep-sea sediments, where it could be recycled by animals and microbes that feed on the mud. In this way, large, intermittent pulses of food could help sustain life in the deep for years or even decades.

Smith and his colleagues are still studying the biological effects of these extreme pulses of food. They have already seen changes in the numbers and types of deep-sea animals living at Station M that appear to result from the feasts of 2011 and 2012. They will be reporting these findings in a subsequent paper.

The researchers note that deep-sea feasts may be increasing in frequency off the Central California coast, as well as at some other deep-sea study sites around the world. Over the last decade, the waters off Central California have seen stronger winds, which bring more nutrients, such as nitrate, to the ocean surface. These nutrients act like fertilizer, triggering blooms of algae, which, in turn, sometimes feed blooms of salps. The fallout from all of this increased productivity eventually ends up on the seafloor.

The authors also note that the changes in ocean conditions that provided more food for deep-sea animals at Station M might be related to global warming. Alternatively, these changes could simply reflect naturally occurring long-term cycles in the ocean.

These findings remind us once again that the deep sea is directly affected by events at the ocean's surface, as well as human activities on land. In fact, information from deep-sea studies such as this will be essential to improving computer models of global carbon cycling and climate change.


Contact: Kim Fulton-Bennett
Monterey Bay Aquarium Research Institute

Related biology news :

1. Bizarre bone worms emit acid to feast on whale skeletons
2. From feast to famine: A metabolic switch that may help diabetes treatment
3. Scientists identify genetic mechanism that contributed to Irish Famine
4. Beating famine: Sustainable food security through land regeneration in a changing climate
5. Molecular interplay explains many immunodeficiencies
6. Gene-diet interaction may help explain link between eating meat & colorectal cancer risk
7. Global ocean currents explain why Northern Hemisphere is the soggier one
8. Rensselaer researchers propose new theory to explain seeds of life in asteroids
9. Protein explains increased asthma severity in children exposed to diesel exhaust from traffic
10. UF: Newly discovered tiger shark migration pattern might explain attacks near Hawaii
11. Study explains Pacific equatorial cold water region
Post Your Comments:
Related Image:
Feast and famine on the abyssal plain
(Date:10/29/2015)... , Oct. 29, 2015   MedNet Solutions , ... entire spectrum of clinical research, is pleased to announce ... Tech Association (MHTA) as one of only three finalists ... "Software – Small and Growing" category. The Tekne Awards honor ... have shown superior technology innovation and leadership. ...
(Date:10/29/2015)... Daon, a global leader in mobile biometric ... new version of its IdentityX Platform , IdentityX ... have already installed IdentityX v4.0 and are ... FIDO UAF certified server component as an option ... features. These customers include some of the largest and ...
(Date:10/29/2015)... , Oct. 29, 2015  Connected health pioneer, ... the explosion of technology-enabled health and wellness, and the ... book, The Internet of Healthy Things ... or smartphones even existed, Dr. Kvedar, vice president, Connected ... health care delivery, moving care from the hospital or ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... InSphero AG, the leading supplier of easy-to-use solutions ... Melanie Aregger to serve as Chief Operating Officer. , Having joined InSphero ... team and was promoted to Head of InSphero Diagnostics in 2014. There ...
(Date:11/24/2015)... QC , Nov. 24, 2015 /CNW Telbec/ - ProMetic ... "Corporation") announced today that Mr. Pierre Laurin , President ... corporate presentation at the upcoming Piper Jaffray 27 th ... Palace Hotel, on December 1-2, 2015. st ... available for one-on-one meetings throughout the day. The presentation will ...
(Date:11/24/2015)... Nov. 24, 2015 HemoShear Therapeutics, LLC, ... drugs for metabolic disorders, announced today the appointment ... Board of Directors (BOD). Mr. Watkins is the ... Genome Sciences (HGS), and also served as the ... Jim Powers , Chairman and CEO of HemoShear ...
(Date:11/24/2015)... NEW YORK , November 24, 2015 /PRNewswire/ ... Bristol-Myers Squibb in a European ... Company in which the companies will work closely together ... other areas of unmet medical need. The collaboration is underpinned ... the latest LSP fund. This is the first investment by ...
Breaking Biology Technology: