Navigation Links
Fate Therapeutics announces creation of small molecule platform for commercial-scale reprogramming
Date:10/18/2009

La Jolla, CA October 18, 2009 Fate Therapeutics, Inc. announced today the generation of human induced-pluripotent stem cells (iPSCs) using a combination of small molecules that significantly improves the speed and efficiency of reprogramming. The discoveries, which were made by Sheng Ding, Ph.D. under a research collaboration between Fate Therapeutics and The Scripps Research Institute (TSRI), represent a more than 200-fold improvement in reprogramming efficiency and reduce the reprogramming period to two weeks as compared to methods using only the four reprogramming factors (Oct 3/4, Sox2, Klf4 and c-Myc). This latest advancement has broad implications for the creation of "pharmaceutical grade" iPSCs, reprogrammed cells that can be produced without genetic modification at commercial scale quantity, quality and consistency and continues to bolster the leadership position of Fate Therapeutics in industrialized iPSC technology. The Company is developing minimally invasive techniques for reprogramming and differentiation and has exclusively in-licensed from TSRI and the Whitehead Institute for Biomedical Research a intellectual property portfolio related to iPSC technology dating back to November 2003.

"While recent studies have reported improved methods of reprogramming, those techniques have relied on further genetic manipulation or have not otherwise addressed a fundamental reprogramming challenge that iPSC generation is still a very slow and inefficient process and results in a heterogeneous population of cells," said Paul Grayson, president & CEO of Fate Therapeutics. "Once again, Dr. Ding and his team are the first group to clear yet another major hurdle required for the widespread commercial use of iPSCs for drug discovery and patient therapies."

The findings of Dr. Ding and his colleagues are published today in the Advanced Online edition of the scientific journal Nature Methods. As compared to using the four reprogramming factors of Oct 3/4, Sox2, Klf4 and c-Myc alone, Dr. Ding discovered a combined chemical approach that dramatically improves (> 200 fold) the generation of iPSCs from human fibroblasts within two weeks of retroviral transduction. The iPSC colonies generated by the Ding team using a 3-compound cocktail could be stably expanded over the long term (20+ passages), closely resembled human embryonic stem cells in terms of morphology and pluripotency marker expression and could be differentiated into derivatives of all the three germ layers both in vitro and in vivo.

"Once we achieved reprogramming with cell-penetrating proteins, we targeted certain biological pathways that might improve speed and efficiency so as to enable the commercial scale production of patient-specific iPSCs for medical use," said Dr. Ding, associate professor of TSRI and scientific founder of Fate Therapeutics. "When combined with non-viral, non-DNA based methods for iPSC generation, we believe these discoveries create a powerful platform for safer, more efficient reprogramming of human somatic cells."

Earlier this year, under a research collaboration with Fate Therapeutics and TSRI, Dr. Ding and his team of scientists became the first group to generate iPSCs using non-viral, non-DNA based reprogramming methods. Instead of inserting the reprogramming factors of Oct 3/4, Sox2, Klf4 and c-Myc with DNA-based methods, such as viruses or plasmids, the scientists engineered and used recombinant proteins to reprogram cells without genetic modifications. The scientists found that those reprogrammed embryonic-like cells dubbed "protein -induced pluripotent stem cells" or "piPSCs" from fibroblasts behave indistinguishably from classic embryonic stem cells in their molecular and functional features, including differentiation into various cell types, such as beating cardiac muscle cells, neurons, and pancreatic cells.


'/>"/>

Contact: Cory Tromblee
ctromblee@macbiocom.com
617-571-7220
MacDougall Biomedical Communications, Inc.
Source:Eurekalert

Related biology news :

1. AACR, NCI and EORTC to host molecular targets and cancer therapeutics conference
2. Neurimmune Therapeutics Announces Advancement of Alzheimers Program into Preclinical Development
3. Amarna Therapeutics B.V. and TNO announce SVac research and development partnership
4. Continuous glucose monitoring technology -- special issue of Diabetes Technology and Therapeutics
5. NIH announces new program to develop therapeutics for rare and neglected diseases
6. Ocera Therapeutics licenses novel treatment for acute hepatic encephalopathy from UCLB
7. Tufts University professor receives IADR Pharmacology/Therapeutics/Toxicology Award
8. Acorda Therapeutics submits new drug application for Fampridine-SR in multiple sclerosis
9. A novel target for therapeutics against Staph infection
10. Bayhill Therapeutics and the Juvenile Diabetes Research Foundation announce research collaboration
11. Growing fuel and medicine: Advancing biofuels and plant-produced therapeutics
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... , June 22, 2016  The American College of Medical ... Show Executive Magazine as one of the fastest-growing trade ... 25-27 at the Bellagio in Las Vegas ... highest percentage of growth in each of the following categories: ... companies and number of attendees. The 2015 ACMG Annual Meeting ...
(Date:6/16/2016)... The global Biometric ... USD 1.83 billion by 2024, according to a ... proliferation and increasing demand in commercial buildings, consumer ... the market growth.      (Logo: ... of advanced multimodal techniques for biometric authentication and ...
(Date:6/3/2016)... June 3, 2016 ... Nepal hat ein ... hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und ... der Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche ... im Januar teilgenommen, aber Decatur wurde als ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , ... June 23, 2016 , ... ... announced the launch of the Supplyframe Design Lab . Located in Pasadena, ... explore the future of how hardware projects are designed, built and brought to ...
(Date:6/23/2016)... Calif. , June 23, 2016  Blueprint Bio, ... biological discoveries to the medical community, has closed its ... Matthew Nunez . "We have received ... with the capital we need to meet our current ... essentially provide us the runway to complete validation on ...
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory ... technical consulting, provides a free webinar on Performing Quality Investigations: Getting ... at 12pm CT at no charge. , Incomplete investigations are still a major ...
(Date:6/22/2016)... 2016 Cell Applications, Inc. and StemoniX ... produce up to one billion human induced pluripotent ... week. These high-quality, consistent stem cells enable researchers ... spend more time doing meaningful, relevant research. This ... manufacturing process that produces affordable, reliable HiPSC for ...
Breaking Biology Technology: