Navigation Links
Faster water flow means greater diversity of invertebrate marine life
Date:11/17/2010

PROVIDENCE, R.I. [Brown University] One of biggest factors promoting the diversity of coastal ocean life is how fast the water flows, according to new research by ecologists at Brown University. Experiments and observation in Palau, Alaska, and Maine showed that the faster the flow, the greater the number of invertebrate species that live on rocks under the water.

The findings, published the week of Nov. 15 in the journal Ecology Letters, could help improve management of delicate and complex coastal ecosystems, said James Palardy, a former Brown doctoral student and the paper's lead author. Finding the fastest water could point scientists to areas where diversity is likely greatest and perhaps especially worthy of protection and to zones where invasive species could establish their first beachheads.

Jon Witman, professor of ecology and environmental biology and Palardy's co-author on the paper, said the results were clear and consistent at all three regions, including in Maine and Alaska where they experimentally manipulated water flow speed.

"It totally blew us a way that we got almost identical results in two marine regions of the world separated by 4,000 miles with completely different regional diversities, and no species shared in common," Witman said. "It's a wake-up call saying that water flow is a really strong predictor of how many species are present in a particular area of the ocean."

The reason why faster flow seems to promote diversity, Witman said, is that it allows for the larvae of rock-dwelling invertebrates, such as barnacles, sea squirts, corals and sponges, to spread farther. Although the environments are quite different, it's somewhat analogous to how trees and flowers can disperse their seeds farther in a stiff wind.

Novel experiment

Palardy and Witman are not the first to observe a connection between water flow and diversity, but they are the first researchers to prove it with experiments. The research began five years ago when the pair started brainstorming about how they might make the important scientific transition from being able to notice the phenomenon to being able to produce and test it.

The pair's goal was to speed up water flow without resorting to expensive and short-lived battery-powered pumps. Instead, the ecologists relied on simple physics that require a volume of water to flow faster when it moves through a narrowed space.

Based on prototypes developed in a giant flume in the basement of the BioMed research building at Brown, they built channels about 7 feet long and about 18 inches high. They lined the walls with plates where organisms could latch on and grow. The test channels narrowed to about half their width in the middle, taking on a bow tie shape. The control channels remained the same width throughout. The control and test channels were placed about 3 to 6 feet below the lowest tide in each of two sites in Maine and Alaskan coastal waters.

In every case they found that the number of different species on the plates in the test channels was much higher than on the plates in the control channels. The greater diversity was no flash in the pan, either. The pattern was visible from early stages and persisted for more than a year of study. Witman also surveyed natural areas in Palau, and Palardy and Witman did the same in Alaska, finding similar effects in areas with faster flow.

Witman said his hope is that the work will not just explain greater biodiversity but will help stem the tide of its loss.

"There's a global biodiversity crisis where we're losing species," he said. "Ecology is very much concerned with sustaining natural processes."


'/>"/>

Contact: David Orenstein
david_orenstein@brown.edu
401-863-1862
Brown University
Source:Eurekalert

Related biology news :

1. This faster-growing E. coli strains a good thing
2. Faster CARS, less damage: NIST chemical microscopy shows potential for cell diagnostics
3. Faster DNA analysis at room temperature
4. Synthetic bone graft recruits stem cells for faster bone healing
5. Faster Salmonella detection now possible with new technique
6. UCLA engineers develop faster method to detect bacterial contamination in coastal waters
7. Chubby birds get there faster
8. ASU scientists develop universal DNA reader to advance faster, cheaper sequencing efforts
9. Ecologists discover forests are growing faster
10. Boston University reseachers develop faster, cheaper DNA sequencing method
11. Faster, cheaper way to find disease genes in human genome passes initial test
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... March 24, 2017 The Controller General of Immigration ... Abdulla Algeen have received the prestigious international IAIR Award for ... Continue Reading ... ... Deputy Controller Abdulla Algeen (small picture on the right) have received the ...
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
Breaking Biology News(10 mins):
(Date:6/16/2017)... ... 16, 2017 , ... CTNext , Connecticut’s go-to resource for entrepreneurial support, ... LOFT at Chelsea Piers in Stamford. , Nine finalists, all of whom are Connecticut-based ... an opportunity to secure $10,000 awards to help support business growth. The winners included:, ...
(Date:6/15/2017)... ... June 15, 2017 , ... ... promising new medical device startup. Dan Parsley, angelMD’s SVP of Corporate Development, served ... and this angelMD syndicate is part of Saranas’ recently announced $4 million Series ...
(Date:6/14/2017)... ... 14, 2017 , ... The Thailand Board of Investment (BOI) ... co-hosting a delegation from Thailand at BIO 2017 in San Diego, CA taking ... the world, regroups more than 1,100 biotech companies, academic institutions, state biotechnology centers ...
(Date:6/14/2017)... ... 2017 , ... The newest company to join the Science Center’s Port business ... human genes. ATGC, a spin out of the University of Michigan, will occupy lab ... genomics company. Its founders are among the first wave of researchers adopting into ...
Breaking Biology Technology: