Navigation Links
Faster CARS, less damage: NIST chemical microscopy shows potential for cell diagnostics

A paper by researchers at the National Institute of Standards and Technology (NIST) may breathe new life into the use of a powerfulbut trickydiagnostic technique for cell biology. The paper,* appearing this week in the Biophysical Journal, demonstrates that with improved hardware and better signal processing, a powerful form of molecular vibration spectroscopy can quickly deliver detailed molecular maps of the contents of cells without damaging them. Earlier studies have suggested that to be useful, the technique would need power levels too high for cells.

The technique, "B-CARS,"** is one of several variations on Raman spectroscopy, which measures the frequencies associated with different modes of vibration of atoms and their bonds in a molecule. The exact mix of these frequencies is an extremely discriminating "fingerprint" for any particular molecule, so Raman spectroscopy has been used as a chemical microscope, able to detail the structure of complex objects by mapping the chemical composition at each point in a three-dimensional space.

In the biosciences, according to NIST chemist Marcus Cicerone, Raman spectroscopy has been used to detect microscopic cellular components such as mitochondria, detect how stem cells differentiate into new forms and distinguish between subtly different cell and tissue types. It can, for example, detect minor differences between various precancerous and cancerous cells, potentially providing valuable medical diagnostic information. Even better, it does this without the need to add fluorescent dyes or other chemical tags to identify specific proteins.

The catch, says Cicerone, is speed. The usual method, spontaneous Raman scattering takes a long time to gather enough data to generate a single spectrumas much as seven minutes for fine detailand that's for each point in the image. "Seven minutes or even five seconds per spectrum is not feasible when we need a million spectra for an image," he observes. CARS, which uses a pair of lasers to pump up the vibrational states and increase signal, is part of the answer. The current breakthroughs for a broadband CARS instrument developed at NIST since 2004, says Cicerone, gets the same information in 50 milliseconds per pixel.

The new catch is power. Recent papers have argued that to get the necessary data, the lasers used in CARS must run at power levels above the damage threshold for living cells, making the technique nearly useless for clinical purposes. Not quite, according to the NIST team. Their paper describes a combination of improved hardware to gather spectra over a very broad range of wavelengths, and a clever mathematical technique that effectively amplifies the useable signal by examining a portion of signal normally ignored as background interference. The result, says Cicerone, pushes their minimum power level below the damage threshold while retaining the speed of CARS. "We have all the information that you have in a Raman spectrum but we get it 5 to 100 times faster," he says, adding that some obvious modifications should push that higher, opening the door to more widespread use of vibrational spectroscopy in both biology and clinical diagnosis.


Contact: Michael Baum
National Institute of Standards and Technology (NIST)

Related biology news :

1. Emissions rising faster this decade than last
2. New type of vaccines deliver stronger and faster immune response
3. Ocean growing more acidic faster than once thought
4. New open-source software permits faster desktop computer simulations of molecular motion
5. Shellfish and inkjet printers may hold key to faster healing from surgeries
6. New wheat disease could spread faster than expected
7. The faster they come
8. Mice run faster on high-grade oil
9. Faster, more cost-effective DNA test for crime scenes, disease diagnosis
10. Faster, cheaper way to find disease genes in human genome passes initial test
11. Ecologists discover forests are growing faster
Post Your Comments:
Related Image:
Faster CARS, less damage: NIST chemical microscopy shows potential for cell diagnostics
(Date:6/27/2016)... Research and Markets has announced the addition of the "Biometrics ... The report forecasts the biometrics market ... CAGR of 12.28% during the period 2016-2020. The ... inputs from industry experts. The report covers the market landscape and ... a discussion of the key vendors operating in this market. ...
(Date:6/22/2016)... , June 22, 2016  The American College of Medical ... Show Executive Magazine as one of the fastest-growing trade ... 25-27 at the Bellagio in Las Vegas ... highest percentage of growth in each of the following categories: ... companies and number of attendees. The 2015 ACMG Annual Meeting ...
(Date:6/22/2016)... , June 22, 2016   Acuant ... and verification solutions, has partnered with RightCrowd ... solutions for Visitor Management, Self-Service Kiosks and ... products that add functional enhancements to existing ... corporations and venues with an automated ID ...
Breaking Biology News(10 mins):
(Date:6/27/2016)...  Alex,s Lemonade Stand Foundation (ALSF), a leading national ... a state-of-the-art bioinformatics lab, using ,big data, to advance ... as Liz Scott , co-executive director of ALSF ... in Washington, D.C. , hosted by ... advocate of pediatric cancer research and awareness. ...
(Date:6/27/2016)... , June 27, 2016  Global demand ... 4.6 percent through 2020 to $7.2 billion.  This ... and beverages, cleaning products, biofuel production, animal feed, ... biotechnology, diagnostics, and biocatalysts). Food and beverages will ... driven by increasing consumption of products containing enzymes ...
(Date:6/27/2016)... ON , June 27, 2016 /PRNewswire/ - BIOREM Inc. ... has been advised by its major shareholders, Clean Technology ... United States based venture capital ... shares of Biorem (on a fully diluted, as converted ... the disposition of their entire equity holdings in Biorem ...
(Date:6/27/2016)...  Sequenom, Inc. (NASDAQ: SQNM ), a ... the development of innovative products and services, announced today ... States denied its petition to review decisions ... U.S. Patent No. 6,258,540 (",540 Patent") are not patent ... Supreme Court,s Mayo Collaborative Services v. Prometheus Laboratories decision.  ...
Breaking Biology Technology: