Navigation Links
Faster, more accurate, more sensitive
Date:12/25/2011

Lightning fast and yet highly sensitive: HHblits is a new software tool for protein research which promises to significantly improve the functional analysis of proteins. A team of computational biologists led by Dr. Johannes Sding of LMU's Genzentrum has developed a new sequence search method to identify proteins with similar sequences in databases that is faster and can discover twice as many evolutionarily related proteins as previous methods. From the functional and structural properties of the identified proteins conclusions can then be drawn on the properties of the protein to be analysed. "Our method will expand the scope and power of sequence analysis, which will in turn facilitate the experimental elucidation of the structure and function of many proteins", says Sding, who is also a member of the Center for Integrated Protein Science Munich (CiPSM). (Nature Methods, 25.12.2011)

Proteins are involved in nearly all biochemical processes of life. The functions that a protein performs largely depend on the sequence of the 20 amino acid building blocks and on the three-dimensional spatial structure into which this sequence of amino acids folds. From the similarity of protein sequences, bioinformatic methods can predict their evolutionary relatedness, which in turn implies similar structure and functions. Therefore, proteins to be studied are standardly subjected to a sequence search, in which their sequence is compared with millions of sequences in public databases with annotated structures and functions. The properties of the protein of interest can then be inferred from the properties of the proteins with similar sequences, including its structure and functions. The general relationship between sequence and function makes it possible to predict the structure and function of a given protein by comparing its sequence with those of proteins of known structure/function. Publicly accessible databases exist in which the sequences of known proteins are stored, together with information on their biological functions, which facilitates such comparisons. "This kind of sequence analysis is a fundamental tool in the field of bioinformatics," explains Sding.

The sequence search programs assess sequence similarity by computing pairwise alignments: the two sequences of amino acids are arranged one above the other in such a way that mostly identical or similar amino acids are paired up in the same columns. "Perhaps even more important than the search for pairwise sequence similarities is the assembly of so-called multiple sequence alignments; in this case one searches for similar sequences in many related proteins and arranges them into a matrix, in which each sequence fills a row and similar amino acids end up in the same columns" says Sding. Because the functions and structure of evolutionarily related proteins are generally conserved - i.e. preserved even when the sequence is altered by mutations during the course of evolution - multiple sequence alignments form the basis for the prediction of the structure and molecular functions of uncharacterized proteins.

For the past 15 years, the program PSI-BLAST has been the most popular tool for the comparison of protein sequences, as it combines speed with high sensitivity and precision. Now Sding's team has designed a method, called HHblits, which clearly surpasses PSI-BLAST in all aspects of performance. This improvement is largely due to two factors. First the researchers convert both the sequence of interest and the sequences in the database to be searched into so-called Hidden Markov Models (HMMs). HMMs are statistical models that incorporate the mutation probabilities determined from sequence alignments so this step increases the sensitivity and precision of the subsequent similarity search. In addition, the team has developed a filtering procedure that allows them to reduce the amount of data that needs to be searched without appreciable loss of sensitivity. The trick is first to assemble similar sequences from the database into multiple sequence alignments. Each alignment column is then labeled with one of 219 "letters", such that columns with similar amino acid composition are represented by the same letter. "By translating the multiple sequence alignments into sequences composed of these 219 letters, we can replace the time-consuming pairwise comparison of HMMs by the comparison of simple sequences", says Sding. This reduces the search time 2500-fold. Sding emphasizes that "HHblits allows to predict the function and structure of proteins more often and more accurately than was previously possible." His group is already working on further improvements to the method, for example by incorporating information on the three-dimensional structures of proteins. (gd)


'/>"/>
Contact: Simon Kirner
simon.kirner@lmu.de
49-892-180-3174
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. UBC megapixel DNA replication technology promises faster, more precise diagnostics
2. ASU scientists develop universal DNA reader to advance faster, cheaper sequencing efforts
3. Boston University reseachers develop faster, cheaper DNA sequencing method
4. Faster, cheaper way to find disease genes in human genome passes initial test
5. Faster, more cost-effective DNA test for crime scenes, disease diagnosis
6. Forsyth scientist receives major grant to support rapid, accurate, affordable test for tuberculosis
7. Orca ears inspire Stanford researchers to develop ultrasensitive undersea microphone
8. Oceans harmful low-oxygen zones growing, are sensitive to small changes in climate
9. LSUHSC study IDs proteins regulating water retention in salt-sensitive hypertension
10. Globalized economy more sensitive to recessions
11. New artificial skin could make prosthetic limbs and robots more sensitive
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)... , May 20, 2016  VoiceIt is ... partnership with VoicePass. By working together, ... experience.  Because VoiceIt and VoicePass take slightly different ... engines increases both security and usability. ... excitement about this new partnership. "This ...
(Date:5/12/2016)... 2016 WearablesResearch.com , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a company ... to the medical community, has closed its Series A ... Nunez . "We have received a commitment ... capital we need to meet our current goals," stated ... us the runway to complete validation on the current ...
(Date:6/23/2016)... Francisco, CA (PRWEB) , ... June 23, 2016 ... ... (EDC) software, is exhibiting at the Pennsylvania Convention Center and will showcase its ... Annual conference. ClinCapture will also be presenting a scientific poster on Disrupting Clinical ...
(Date:6/23/2016)... , June 22, 2016  Amgen (NASDAQ: ... of the QB3@953 life sciences incubator to ... health. The shared laboratory space at QB3@953 was created ... a key obstacle for many early stage organizations - ... of the sponsorship, Amgen launched two "Amgen Golden Ticket" ...
(Date:6/22/2016)... 22, 2016 Research and Markets has announced ... report to their offering. ... from $29.3 billion in 2013. The market is expected to grow ... 2015 to 2020, increasing from $50.6 billion in 2015 to $96.6 ... during the forecast period (2015 to 2020) are discussed. As well, ...
Breaking Biology Technology: