Navigation Links
Faster, cheaper way to find disease genes in human genome passes initial test

University of Washington (UW) researchers have successfully developed a novel genome-analysis strategy for more rapid, lower cost discovery of possible gene-disease links. By saving time and lowering expenses, the approach makes it feasible for scientists to search for disease-causing genes in people with the same inherited disorder but without any family ties to each other.

The strategy also might be extended to common medical conditions with complex genetics by making it more cost-effective and efficient to study the genomes of large groups of people.

Such large-scale research hasn't been undertaken because it has been prohibitively expensive, cumbersome, and time-consuming to sequence, compare and interpret entire human genomes.

The study, published today in Nature by lead author Sarah B. Ng, a graduate student in the UW Department of Genome Sciences, was conducted as a proof-of-concept to see if a more targeted analysis and newer technology could identify candidate genes for Mendelian disorders. These are diseases like cystic fibrosis or sickle cell anemia that are caused by a mutation in a single gene and are passed along through generations in a simple inheritance pattern. In this study, the rare Mendelian disorder picked to evaluate the strategy in unrelated, affected individuals was Freeman-Sheldon syndrome.

The study's senior author is Jay Shendure, UW assistant professor of genome sciences. In addition to the Shendure lab, the UW labs of Deborah Nickerson, Genome Sciences; Michael Bamshad, Pediatrics; and Evan Eichler, Genome Sciences, played key roles in the collaborative study.

To make progress in disease genetics, new strategies such as this are vital. Shendure gave an example: "The genetics of thousands of rare diseases remains unsolved because sufficient numbers of families with individuals affected by those disorders are not easily available. Even with such families, mapping and identifying the causative gene can take many years."

From attempts to determine the genetics of cancer, diabetes, and heart disease, scientists now realize that common variations in the human genome account for only a small fraction of the risk of these common diseases. The new strategy allows researchers to investigate the contributions of rare variants and might be extended to larger population studies to untangle the complex genetics underlying the leading causes of death and disability.

Shendure explained the team's approach: "We decided to focus only on the 1 percent of the human genome which codes for proteins. This portion is called the exome. In other words, we determined the genetic variation in these areas, and ignored the rest. We used new technologies to capture these specific regions in the genomes of 12 people, 4 of whom were affected by the same Mendelian disorder. None of the subjects were relatives. We then decoded these selected parts of the genome through massively parallel DNA sequencing, a technology that allows one to sequence hundreds of millions of DNA fragments in parallel." Intersecting these data found that only a single gene, MYH3, contained novel mutations in the exomes of all four affected individuals.

The UW was one of three institutions, along with Harvard Medical School and the Broad Institute, funded in 2008 for The Exome Project by the National Heart, Lung and Blood Institute of the National Institutes of Health. The project aims at developing technologies to selectively sequence the human exome.

Shendure pointed out that a limitation of sequencing only exomes is that it doesn't reveal the regulatory, structural or other non-coding differences between human genomes.

Despite this limitation, genome-focused sequencing has several advantages: "Our focus on the protein-coding subset of the genome enables us do at least 20 times more samples than could be done with whole genome sequencing with equivalent effort," Shendure said. The data-gathering for this project started in November of 2008, and finished in February 2009. However, with the technical advances the researchers have achieved, a similar type of rare disease could be solved in a matter of weeks, and in the future even more rapidly.

As "second-generation" DNA sequencing technologies such as this expand in their use and overcome obstacles in the cost and time for collecting data, Shendure predicts different challenges will follow each step. For example, the amount of raw data that is collected by these sequencing instruments at the UW alone soon will be measured in petabytes. A petabyte is one quadrillion units of computer data, roughly the equivalent of 6 billion Web photos. New computational approaches for data analysis are a major part of the UW efforts, and they are expanding the new information that can be obtained with an exome-based approach.

"Massively parallel technologies that make it possible to study individual genomes have only recently emerged," Shendure said, "but hold significant promise for gaining new insights in human biology and medicine. This approach to human exome sequencing will be the key in scaling everyone's efforts to explore the genetics of both susceptibility and resistance to more complex human diseases such as heart disease, cancer, and infectious diseases."


Contact: Leila Gray
University of Washington

Related biology news :

1. Faster, more cost-effective DNA test for crime scenes, disease diagnosis
2. TGen investigators devise faster, cheaper way of analyzing the human genome
3. Tires made from trees -- better, cheaper, more fuel efficient
4. A quicker, cheaper SARS virus detector -- one easily customizable for other targets
5. New cheaper method for mapping disease genes
6. Pharmaceutical breakthrough may make a range of drugs cheaper and more available
7. Iowa State researchers look for smaller, cheaper, 1-dose vaccines
8. Cheaper drugs now closer to realization with new DropArray technology
9. The power of multiples: Connecting wind farms can make a more reliable - and cheaper - power source
10. Mothers immune system may block fetal treatments for blood diseases
11. Carnegie Mellon develops innovative method to detect genetic causes of complex diseases
Post Your Comments:
Related Image:
Faster, cheaper way to find disease genes in human genome passes initial test
(Date:5/9/2016)... UAE, May 9, 2016 Elevay ... comes to expanding freedom for high net worth professionals ... in today,s globally connected world, there is still no ... could ever duplicate sealing your deal with a firm ... passports by taking advantage of citizenship via investment programs ...
(Date:4/28/2016)... and BANGALORE, India , April 28, 2016 ... a product subsidiary of Infosys (NYSE: INFY ), ... a global partnership that will provide end customers ... mobile banking and payment services.      (Logo: ... innovation area for financial services, but it also plays a ...
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... ) The integration will ... to access and transact across channels. Using this ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... BEACH, Calif. , June 23, 2016  Blueprint ... new biological discoveries to the medical community, has closed ... co-founder Matthew Nunez . "We have ... us with the capital we need to meet our ... will essentially provide us the runway to complete validation ...
(Date:6/23/2016)... On Wednesday, June 22, 2016, the ... the Dow Jones Industrial Average edged 0.27% lower to finish ... 0.17%. has initiated coverage on the following equities: Infinity ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... ). Learn more about these stocks by accessing their free ...
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... focused on quality, regulatory and technical consulting, provides a free webinar ... presented on July 13, 2016 at 12pm CT at no charge. , Incomplete ...
(Date:6/23/2016)... 22, 2016  Amgen (NASDAQ: AMGN ) ... QB3@953 life sciences incubator to accelerate the development ... laboratory space at QB3@953 was created to help high-potential ... for many early stage organizations - access to laboratory ... Amgen launched two "Amgen Golden Ticket" awards, providing each ...
Breaking Biology Technology: