Navigation Links
Fast-track gene-ID method speeds rare disease search
Date:9/16/2010

ANN ARBOR, Mich. A University of Michigan-led research team has identified a gene responsible in some families for a devastating inherited kidney disorder, thanks to a new, faster method of genetic analysis not available even two years ago. The success offers hope that scientists can speed the painstaking search for the genes responsible for many rare diseases and test drugs to treat them.

The U-M scientists report their success with exome capture, a groundbreaking genetic analysis technique, in the September issue of Nature Genetics.

The U-M- led international research team collaborated with two companies to test the emerging technology's ability to isolate the culprit gene in families with inherited single-gene kidney diseases. Many rare diseases that strike children and young adults result when a single gene malfunctions.

"We are one of the first research teams to take this technology and move it forward to identify single genes," says senior author Friedhelm Hildebrandt, M.D., a Howard Hughes Medical Institute Investigator, a Doris Duke Distinguished Clinical

Scientist and Frederick G. L. Huetwell Professor for the Cure and Prevention of Birth Defects at U-M.

"For us, it's a big leap in what genetics can do," Hildebrandt says. "In five years, families may be asked, 'Do you want to look at the cause of your rare disease?' In the not-too-distant future, we may be able to enroll them in a drug study."

Hildebrandt is an internationally known expert on the genetic basis of several severe kidney diseases that cause early renal failure in infants and children. He is also a professor in the U-M departments of human genetics and pediatrics and communicable diseases.

Hildebrandt and colleagues combined exome capture with a method of ultra-fast data analysis called massively parallel processing to identify a new gene involved in a family of congenital cystic kidney diseases known as nephronophthisis-related ciliopathies, or NPHP-RC. Taken together, these ciliopathy disorders are the most frequent genetically caused kidney disease in the first three decades of life.

The study results mean that Hildebrandt's team and other researchers now have an efficient way to identify yet-undiscovered genes involved in NPHP-RC disorders.

Hildebrandt's goal is to identify the genes responsible for these ciliopathies and find therapies to prevent or reverse their effects.

Research details

Hildebrandt used a combination of strategies of genetic analysis to expedite the search for the faulty gene in 10 NPHP-RC families. To screen candidate genes, the team collaborated with two companies, Roche NimbleGen, Inc., and Agilent, to apply the exome capture technique.

In the cell nucleus, exons, known collectively as the exome, are chains of nucleotides, or basic compounds that make up DNA, which leave the nucleus and produce proteins vital to body processes. Messenger RNA carries exons outside the nucleus, whereas other genetic material called introns remains behind. Capturing and analyzing only the exons speeded the search.

Context

People with NPHP-RC have abnormal development or degeneration of the kidneys, retina and cerebellum. Dialysis and kidney transplant are the only treatment options available.

The search for the genetic basis of these disorders, and other rare diseases as well, has turned out to be much more complicated than researchers hoped decades ago. Scientists have found that different single genes are responsible for disease in different subgroups of affected families. Discovering a culprit gene may yield insights for screening and future treatment, but only for a limited portion of all those affected.

Collaborating with scientists worldwide, Hildebrandt's lab has discovered more than 10 gene mutations that contribute to NPHP-RC diseases. But in an estimated 70 percent of cases, the gene involved is unknown.

What's next

"Once exome capture is used on a large scale, there will be databases that will reveal regions where mutations are known to cause disease," Hildebrandt says.

Future databases for rare diseases may take five to 10 years to develop. Testing of potential drug treatments can be expected to move forward at the same time. In zebrafish, Hildebrandt's lab has started to screen two drug compounds to see if either can restore the protein levels that the newly identified gene would produce if it functioned normally.


'/>"/>

Contact: Anne Rueter
arueter@umich.edu
734-764-2220
University of Michigan Health System
Source:Eurekalert

Related biology news :

1. New technique can fast-track better ionic liquids for biomass pre-treatments
2. OU study on genetics in fruit flies leads to new method for understanding brain function
3. New method successfully predicted how oil from Deepwater Horizon spill would spread
4. University at Buffalo symposium on in silico methods, high throughput screening
5. Cold Spring Harbor Protocols features chromosomal rearrangement, gene copy number methods
6. Half-a-loaf method can improve magnetic memories
7. Zinc finger nuclease, immunoprecipitation methods featured in Cold Spring Harbor Protocols
8. New methods, new math speed detection of drug-resistant malaria
9. Body of evidence: New fast, reliable method to detect gravesoil
10. California team to receive up to $122 million to develop method to produce fuels from sunlight
11. Mother Nature to provide an environmentally friendly method for reducing mosquitoes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... LONDON , April 26, 2016 /PRNewswire/ ... Systems, a product subsidiary of Infosys (NYSE: ... partnership to integrate the Onegini mobile security platform ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration ... security to access and transact across channels. Using ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
(Date:3/31/2016)... -- Genomics firm Nabsys has completed a financial  restructuring under ... M.D., who returned to the company in October 2015. ... including Chief Technology Officer, John Oliver , Ph.D., ... Vice President of Software and Informatics, Michael Kaiser ... Bready served as CEO of Nabsys from 2005-2014 and ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
(Date:6/23/2016)... ... 2016 , ... Charm Sciences, Inc. is pleased to announce ... Research Institute approval 061601. , “This is another AOAC-RI approval of the Peel ... President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably to ...
(Date:6/23/2016)... SAN FRANCISCO , June 23, 2016   ... it has secured $1 million in debt financing from ... to ramp up automation and to advance its drug ... for its new facility. "SVB has been ... goes beyond the services a traditional bank would provide," ...
(Date:6/23/2016)... ... 2016 , ... In a new case report published today in STEM CELLS ... developed lymphedema after being treated for breast cancer benefitted from an injection of stem ... with this debilitating, frequent side effect of cancer treatment. , Lymphedema refers ...
Breaking Biology Technology: