Navigation Links
Farming and chemical warfare: A day in the life of an ant?

One of the most important developments in human civilisation was the practice of sustainable agriculture. But we were not the first - ants have been doing it for over 50 million years. Just as farming helped humans become a dominant species, it has also helped leaf-cutter ants become dominant herbivores, and one of the most successful social insects in nature. According to an article in the November issue of Microbiology Today, leaf-cutter ants have developed a system to try and keep their gardens pest-free; an impressive feat which has evaded even human agriculturalists.

Leaf-cutter ants put their freshly-cut leaves in gardens where they grow a special fungus that they eat. New material is continuously incorporated into the gardens to grow the fungus and old material is removed by the ants and placed in special refuse dumps away from the colony. The ants have also adopted the practice of weeding. When a microbial pest is detected by worker ants, there is an immediate flurry of activity as ants begin to comb through the garden. When they find the pathogenic 'weeds', the ants pull them out and discard them into their refuse dumps.

"Since the ant gardens are maintained in soil chambers, they are routinely exposed to a number of potential pathogens that could infect and overtake a garden. In fact, many of the ant colonies do become overgrown by fungal pathogens, often killing the colony," said Professor Cameron Currie from the University of Wisconsin-Madison, USA. "Scientists have shown that a specialized microfungal pathogen attacks the gardens of the fungus-growing ants. These fungi directly attack and kill the crop fungus, and can overrun the garden in a similar fashion to the way weeds and pests can ruin human gardens."

A curious observation was that some worker ants had a white wax-like substance across their bodies. When they looked at it under a microscope scientists discovered that this covering was not a wax, but a bacterium! These bacteria are part of the group actinobacteria, which produce over 80% of the antibiotics used by humans. The bacteria produce antifungal compounds that stop the microfungal pathogen from attacking the garden. This discovery was the first clearly demonstrated example of an animal, other than humans, that uses bacteria to produce antibiotics to deal with pathogens.

"Research in our laboratory has revealed a number of interesting properties between the bacteria and the pathogenic fungus. The bacteria appear to be specially suited to inhibiting the pathogenic fungi that infect the ants' fungus garden," said Professor Currie.

The interaction between the ants and their fungus crop, and the ants and the bacteria is known as a mutualistic relationship. In general a mutualism is established when both members of the interaction benefit from the relationship. In the antfungus mutualism, the ants get food from the fungus. This mutualism is so tight that if the fungus is lost, the entire colony may die. In return, the fungus receives a continuous supply of growing material, protection from the environment, and protection from disease-causing pests.

So what do the bacteria get out of producing pesticides for the ants? "For starters, they get food. Many species of fungus-growing ants have evolved special crypts on their bodies where the bacteria live and grow. Scientists believe that the ants feed the bacteria through glands connected to these crypts," said Dr Garret Suen, a post-doctoral fellow in Professor Currie's lab. "Also, the bacteria get a protected environment in which to grow, away from the intense competition they would face if they lived in other environments such as the soil."

"Interestingly, the tight association between ant, bacteria and pathogen will sometimes result in the pathogen winning. This interplay has been described as a chemical 'arms race' between the bacteria and fungus, with one side beating the other as new compounds are evolved," said Professor Currie. "At the moment, we are beginning to understand the chemical warfare at the genetic level, and it is likely that these types of interactions are more prevalent in nature than previously thought."

So how exactly does an ant go about forming partnerships with a fungus and a bacterium? No one really knows. With new advances in molecular and genetic technologies, such as whole-genome sequencing, Professor Currie and Dr Suen hope to discover how these associations were established, and to understand how these interactions resulted in the remarkable fungus-growing ability of the ants.


Contact: Lucy Goodchild
Society for General Microbiology

Related biology news :

1. Report -- adapting farming to climate change
2. Finding the real potential of no-till farming for sequestering carbon
3. Pharmaceutical use in Norwegian fish farming in 2001-2007
4. Parasite-resistant peppers green alternatives to chemical pesticides
5. Researchers use chemical from medicinal plants to fight HIV
6. Simple chemical procedure augments therapeutic potential of stem cells
7. Sniffing out a better chemical sensor
8. UC Davis chemical ecologist wins major award
9. American Chemical Society Weekly PressPac Oct. 15, 2008
10. American Chemical Societys Weekly PressPac
11. A major prize in the chemical sciences announced by the Camille and Henry Dreyfus Foundation
Post Your Comments:
(Date:11/26/2015)... 26, 2015 Research and Markets ( ... Fingerprint Sensors - Technology and Patent Infringement Risk Analysis" ... --> --> Fingerprint sensors using capacitive ... The fingerprint sensor vendor Idex forecasts an increase of ... mobile devices and of the fingerprint sensor market between ...
(Date:11/20/2015)... , November 20, 2015 ... company focused on the growing mobile commerce market and ... Gino Pereira , was recently interviewed on ... will air on this weekend on Bloomberg Europe ... America . --> NXTD ) ("NXT-ID" or ...
(Date:11/19/2015)... Nov. 19, 2015  Based on its in-depth analysis ... recognizes BIO-key with the 2015 Global Frost & Sullivan ... & Sullivan presents this award to the company that ... the needs of the market it serves. The award ... and expands on customer base demands, the overall impact ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... CITY , Nov. 24, 2015 /PRNewswire/ - Aeterna ... request of IIROC on behalf of the Toronto Stock ... news release there are no corporate developments that would ... --> --> About ... . --> Aeterna Zentaris is ...
(Date:11/24/2015)... , November 24, 2015 ... market research report "Oligonucleotide Synthesis Market by Product & ... Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & ... by MarketsandMarkets, the market is expected to reach USD ... 2015, at a CAGR of 10.1% during the forecast ...
(Date:11/24/2015)... IN (PRWEB) , ... November 24, 2015 , ... The ... newest Special Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent ... the last few years. Many AMA members have embraced this type of racing and ...
(Date:11/24/2015)... , November 24, 2015 ... recent market research report released by Transparency Market Research, ... expand at a CAGR of 17.5% during the period ... Testing Market - Global Industry Analysis, Size, Volume, Share, ... global non-invasive prenatal testing market to reach a valuation ...
Breaking Biology Technology: