Navigation Links
Facile synthesis of nanoparticles with multiple functions advanced in Singapore

Nanostructured materials have garnered great interest worldwide due to their unique size-dependent properties for chemical, electronic, structural, medical and consumer applications.

Singapore's Institute for Bioengineering and Nanotechnology (IBN) has discovered a new environmentally friendly method to synthesize a wide variety of nanoparticles inexpensively. This new chemical synthesis has been recently published in Nature Materials.

IBN researchers have developed a protocol to transfer metal ions from an aqueous solution to an organic solution such as toluene. Metal compounds that can dissolve in water are inexpensive and commonly available.

Many useful metals and scarce materials that are soluble in water may now become readily employed in the synthesis of nanoparticles. This new approach developed by IBN is a simple, room-temperature process that does not produce toxic chemicals.

The IBN research team has successfully transferred metal ions rapidly from water to an organic medium by mixing a solution of metal salts dissolved in water with an ethanol solution of dodecylamine (DDA). The metals would bond with the DDA and can then be extracted with an organic solvent, chemical compounds that usually have a low boiling point, evaporate easily or can be removed by distillation. Solvents can be used to extract soluble chemical complexes from a mixture.

At IBN, the transfer of the metal ions from the aqueous phase to the organic phase was successfully applied towards the synthesis of a variety of metallic, alloy and semiconductor nanoparticles.

In contrast to other approaches for nanoparticles synthesis, the IBN protocol allows metal-based nanoparticles to be prepared in an organic medium using water-soluble, inexpensive, common metal precursors.

This method is highly efficient and easily applied to derive many types of nanoparticles that have interesting applications, including metal-semiconductor nanocomposites and hybrid nanoparticles.

Besides IBN's focus on applying this protocol to the nanocrystalline synthesis of metals, semiconductors and their hybrids, the extraction of metals dissolved in water would be significant for applications in environmental remediation, e.g. extraction of heavy metals from water and soil.

"Water pollution from heavy metals is a major long-term economic and healthcare problem that has global implications. Once contaminated, it is often difficult and expensive to purify the affected environment and extract the pollutants. Besides highly toxic metals such as mercury and lead, other valuable metals, including gold, silver, iridium and osmium, are also soluble in water, and may be extracted by our protocol," remarked IBN Research Scientist Jun Yang, Ph.D.

"At this point, it is possible to extract the metals very effectively using an organic solvent such as toluene to remove the metal residue. Organic solvents are less dense than ethanol or water and float on top of the aqueous solution. When we agitate the mixture, the metals dissolve in the toluene and are completely removed from the ethanol and water. Our process allows us to extract metals from water without leaching out the mineral ions that are normally present in water or soil," said Dr. Yang.

"We have demonstrated a general protocol for transferring metal ions from water to an organic phase. This technique may be applied to transfer a wide range of transition metal ions from water. We can greatly facilitate and reduce the cost of producing a variety of metallic, alloy, semiconductor and semiconductor-metal hybrid nanoparticles through our simple and flexible approach to engineer advanced materials with novel structures and multiple functionalities" said Jackie Y. Ying, Ph.D., IBN Executive Director and principal investigator of this research.


Contact: Cathy Yarbrough
Agency for Science, Technology and Research (A*STAR), Singapore

Related biology news :

1. Researchers successfully simulate photosynthesis and design a better leaf
2. Discovering the secret code behind photosynthesis
3. Research synthesis shines light on several management options after fires in diverse ecosystems
4. Pliable proteins keep photosynthesis on the light path
5. Advance in understanding cellulose synthesis
6. Novel 3-D cell culture model shows selective tumor uptake of nanoparticles
7. MIT: Remote-control nanoparticles deliver drugs directly into tumors
8. Researchers mimic bacteria to produce magnetic nanoparticles
9. Environmental fate of nanoparticles depends on properties of water carrying them
10. Nanoparticles assemble by millions to encase oil drops
11. New ORNL process brings nanoparticles into focus
Post Your Comments:
(Date:11/20/2015)... 20, 2015 NXTD ) ("NXT-ID" ... the growing mobile commerce market and creator of the ... , was recently interviewed on The RedChip Money ... this weekend on Bloomberg Europe , Bloomberg Asia, ... --> NXTD ) ("NXT-ID" or the "Company"), a ...
(Date:11/18/2015)... Nov. 18, 2015  As new scientific discoveries deepen ... and other healthcare providers face challenges in better using ... patients. In addition, as more children continue to survive ... adulthood and old age. John M. Maris, ... Hospital of Philadelphia (CHOP) . --> ...
(Date:11/17/2015)... November 17, 2015 Paris ... 2015.  --> Paris , qui ... DERMALOG, le leader de l,innovation biométrique, a inventé ... passeports et empreintes sur la même surface de balayage. ... et l,autre pour les empreintes digitales. Désormais, un seul ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ ... (the "Company") announced today that the remaining 11,000 ... Common Share Purchase Warrants (the "Series B Warrants") ... agreement were exercised on November 23, 2015, which ... Common Shares.  After giving effect to the issuance ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... environment are paramount. Insertion points for in-line sensors can represent a weak spot ... InTrac 781/784 series of retractable sensor housings , which are designed to ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... Inc., on being named to Deloitte's 2015 Technology Fast 500 list of the ... manufactures AcceleDent®, a FDA-cleared, Class II medical device that speeds up orthodontic tooth ...
(Date:11/24/2015)... 24, 2015 Capricor Therapeutics, Inc. ... the discovery, development and commercialization of first-in-class therapeutics, today ... Officer, is scheduled to present at the 2015 Piper ... a.m. EST, at The Lotte New York Palace Hotel ... . --> . ...
Breaking Biology Technology: