Navigation Links
FSU researcher using computers to hone cancer-fighting strategies

TALLAHASSEE, Fla. -- A Florida State University faculty member who uses computational techniques to evaluate a new class of cancer-killing drugs is attracting worldwide attention from other researchers.

Kevin C. Chen, an assistant professor of chemical and biomedical engineering at the Florida A&M University-Florida State University College of Engineering, is using high-powered computers to determine how substances known as recombinant immunotoxins can best be modified in order to attack and kill malignant tumors while doing minimal harm to a patient's healthy cells.

"Cancer is a disease of tremendous complexity, so the analysis and interpretation of data demands sophisticated, specialized computational methods," Chen said of his research.

Recombinant immunotoxins, Chen explained, are new drugs that are being tested in clinical trials for certain types of cancer therapy. They consist of tiny fragments of antibody proteins that are fused at the genetic level to toxins produced by certain types of bacteria, fungi or plants.

"Once injected into the body, the antibody portion of the immunotoxin targets specific proteins, called antigens, that are massively expressed on the surface of cancer cells," Chen said. "These cells are subsequently killed by the accompanying toxins. Normal, healthy cells, meanwhile, are not recognized and thus are spared."

That is the theory, at least. In practice, Chen acknowledges that numerous factors can decrease the immunotoxins' effectiveness. Among them:

*The large size of some immunotoxin molecules can hinder their ability to move to the targeted location to bind readily with cancer cell proteins, leading to efforts to reduce their size.

*The immunotoxin molecules' stability in the bloodstream and in the extracellular matrix can affect their length of time in circulation and in tumor tissues, respectively, thereby determining their effectiveness at killing the optimal number of cancer cells.

*The rate at which immunotoxins bind with malignant cells and the relative amount of antigens expressed on the cell surface are especially critical factors, because an imbalance in those two factors may result in over-bombardment of a single cancer cell with excessive numbers of immunotoxins, leaving many other cancer cells unharmed. The opposite scenario also is possible: If not enough immunotoxins bind with malignant cells, too few cells will be killed with each dose.

"Because the level of anticancer drug doses that can be given to any patient is limited by immunogenicity -- the immune response that results -- it is essential to explore how the efficacy of recombinant immunotoxins can be enhanced without resorting to escalating doses," Chen said. "Our computational research has enabled us to quantify and develop models describing many of the factors that influence immunotoxins' behavior in the body. This is essential knowledge that cancer researchers and doctors must have in order to take the next steps forward in developing immunotoxin drugs that might one day be approved as a standard treatment for cancer patients."


Contact: Kevin C. Chen
Florida State University

Related biology news :

1. Texas A&M researchers develop tool to study complex clusters of genes
2. Weekends slow weight loss, researchers find
3. Researchers coat titanium with polymer to improve integration of joint replacements
4. Researchers link early stem cell mutation to autism
5. Montreal Heart Institute and Mount Sinai Hospital researchers contribute to Crohns disease study
6. Salk researchers reprogram adult stem cells in their natural environment
7. UIC researchers make promising finding in severe lung disease
8. Montana State researchers release guide to noninvasive carnivore research
9. Growth hormones link to starvation may be clue to increasing life span, researchers find
10. Researchers explain nitrogen paradox in forests
11. UC Davis researcher leads climate-change discovery
Post Your Comments:
Related Image:
FSU researcher using computers to hone cancer-fighting strategies
(Date:5/12/2016)... May 12, 2016 , a ... the overview results from the Q1 wave of its ... wave was consumers, receptivity to a program where they ... a health insurance company. "We were surprised ... says Michael LaColla , CEO of Troubadour Research, ...
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
(Date:4/26/2016)... 27, 2016 Research and ... Biometrics Market 2016-2020"  report to their offering.  , ... The analysts forecast the global multimodal biometrics ... during the period 2016-2020.  Multimodal biometrics ... such as the healthcare, BFSI, transportation, automotive, and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica ... in people with peritoneal or pleural mesothelioma. Their findings are the subject of a ... , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue of ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one of the ... brand, UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing ... to its list of well-respected retailers. This list includes such fine stores as ...
Breaking Biology Technology: