Navigation Links
Extracting cellular 'engines' may aid in understanding mitochondrial diseases
Date:1/6/2011

Medical researchers who crave a means of exploring the genetic culprits behind a host of neuromuscular disorders may have just had their wish granted by a team working at the National Institute of Standards and Technology (NIST), where scientists have performed surgery on single cells to extract and examine their mitochondria.

The scientists reached into these cells and extracted their "engines"the mitochondria that are in large part responsible for our metabolism. Many human cells contain hundreds of mitochondria, which were thought to be free-swimming organisms millions of years ago and which still possess their own DNA. Mutations in this mitochondrial DNA (mtDNA) are directly related to a large class of mitochondrial-based diseases, which have a range of symptoms that include early onset blindness, seizures, hearing loss, dementia, etc. In the general population, one out of every 200 people possesses a mtDNA mutation that may develop into a mitochondrial disease.

Investigating more deeply has been problematic, though, because the way mitochondria mix and spread their DNA within and among cells is poorly understood. "The trouble is that it's very difficult to extract single mitochondria from an individual cell," says NIST physicist Joseph Reiner. "For years, the best technique has been to break open a group of cells and collect the mitochondria from all of them in a kind of soup. As you might guess, it's hard to determine which mitochondria came from what cellsyet that's what we need to know."

The research team, which also includes scientists from Gettysburg College, has potentially solved this problem by realizing that several devices and techniques can be used together to extract a single mitochondrion from a cell that possesses a genetic mutation. They employed a method** previously used to extract single chromosomes from isolated rice cells where a laser pulse makes an incision in a cell's outer membrane. Another laser is used as a "tweezer" to isolate a mitochondrion, which then can be extracted by a tiny pipette whose tip is less than a micrometer wide.

This approach allowed the team to place a single mitochondrion into a small test tube, where they could explore the mitochondrion's genetic makeup by conventional means. The team found the mutation present throughout the entire cell was also found within individual mitochondria, a find suggesting that broad genetic research on mitochondrial disease may be possible at last.

"Getting an object as tiny as this from tweezer to test tube is not easy," says Koren Deckman, a biochemist from Gettysburg College. "But by building on more than a decade of work that has gone on at NIST and elsewhere, we now have a way to see the mitochondria we extract all the way through the transfer process, meaning we can be sure the sample came from a very specific cell. This could give medical scientists the inroad they need for understanding these diseases."


'/>"/>

Contact: Chad Boutin
boutin@nist.gov
301-975-4261
National Institute of Standards and Technology (NIST)
Source:Eurekalert

Related biology news :

1. New book highlights the cellular and molecular determinants of brain wiring
2. Some cancer drugs may block cellular cross talk but not kill cancer cells
3. BUSM researchers uncover cellular mechanism responsible for chronic inflammation, Type 2 diabetes
4. Massachusetts General Hospitals Warren Triennial Prize to honor pioneers of cellular reprogramming
5. Children with autism more likely to have mitochondrial defects impacting cellular energy production
6. Scientists discover molecular switch that contributes to cellular aging process
7. The most aggressive forms of breast cancer elude cellular control mechanisms in order to expand
8. UNC scientists identify cellular communicators for cancer virus
9. NYU Courant researchers develop algebraic model to monitor cellular change
10. Novel protein critical for cellular proliferation discovered
11. Ticking of cellular clock promotes seismic changes in the chromatin landscape associated with aging
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... Forecasts by Product Type (EAC), ... End-Use (Transportation & Logistics, Government & Public Sector, Utilities ... Generation Facility, Nuclear Power), Industrial, Retail, Business Organisation (BFSI), ... you looking for a definitive report on the $27.9bn ... ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... 30, 2017 Trends, opportunities and forecast in ... by technology (fingerprint, AFIS, iris recognition, facial recognition, hand ... by end use industry (government and law enforcement, commercial ... banking, and others), and by region ( North ... Asia Pacific , and the Rest of ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 11, 2017 , ... Proscia Inc ., a data ... titled, “Pathology is going digital. Is your lab ready?” with Dr. Nicolas Cacciabeve, ... and how Proscia improves lab economics and realizes an increase in diagnostic confidence.* ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced that ... SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 ... cross the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation ...
(Date:10/10/2017)... 2017 International research firm Parks Associates announced today ... the TMA 2017 Annual Meeting , October 11 in ... home security market and how smart safety and security products impact the ... Parks Associates: Smart Home Devices: ... "The residential security market has experienced ...
(Date:10/9/2017)... ... 09, 2017 , ... The award-winning American Farmer television series will feature 3 ... airs Tuesdays at 8:30aET on RFD-TV. , With global population estimates nearing ten ... to continue to feed a growing nation. At the same time, many of our ...
Breaking Biology Technology: