Navigation Links
Extracting cellular 'engines' may aid in understanding mitochondrial diseases

Medical researchers who crave a means of exploring the genetic culprits behind a host of neuromuscular disorders may have just had their wish granted by a team working at the National Institute of Standards and Technology (NIST), where scientists have performed surgery on single cells to extract and examine their mitochondria.

The scientists reached into these cells and extracted their "engines"the mitochondria that are in large part responsible for our metabolism. Many human cells contain hundreds of mitochondria, which were thought to be free-swimming organisms millions of years ago and which still possess their own DNA. Mutations in this mitochondrial DNA (mtDNA) are directly related to a large class of mitochondrial-based diseases, which have a range of symptoms that include early onset blindness, seizures, hearing loss, dementia, etc. In the general population, one out of every 200 people possesses a mtDNA mutation that may develop into a mitochondrial disease.

Investigating more deeply has been problematic, though, because the way mitochondria mix and spread their DNA within and among cells is poorly understood. "The trouble is that it's very difficult to extract single mitochondria from an individual cell," says NIST physicist Joseph Reiner. "For years, the best technique has been to break open a group of cells and collect the mitochondria from all of them in a kind of soup. As you might guess, it's hard to determine which mitochondria came from what cellsyet that's what we need to know."

The research team, which also includes scientists from Gettysburg College, has potentially solved this problem by realizing that several devices and techniques can be used together to extract a single mitochondrion from a cell that possesses a genetic mutation. They employed a method** previously used to extract single chromosomes from isolated rice cells where a laser pulse makes an incision in a cell's outer membrane. Another laser is used as a "tweezer" to isolate a mitochondrion, which then can be extracted by a tiny pipette whose tip is less than a micrometer wide.

This approach allowed the team to place a single mitochondrion into a small test tube, where they could explore the mitochondrion's genetic makeup by conventional means. The team found the mutation present throughout the entire cell was also found within individual mitochondria, a find suggesting that broad genetic research on mitochondrial disease may be possible at last.

"Getting an object as tiny as this from tweezer to test tube is not easy," says Koren Deckman, a biochemist from Gettysburg College. "But by building on more than a decade of work that has gone on at NIST and elsewhere, we now have a way to see the mitochondria we extract all the way through the transfer process, meaning we can be sure the sample came from a very specific cell. This could give medical scientists the inroad they need for understanding these diseases."


Contact: Chad Boutin
National Institute of Standards and Technology (NIST)

Related biology news :

1. New book highlights the cellular and molecular determinants of brain wiring
2. Some cancer drugs may block cellular cross talk but not kill cancer cells
3. BUSM researchers uncover cellular mechanism responsible for chronic inflammation, Type 2 diabetes
4. Massachusetts General Hospitals Warren Triennial Prize to honor pioneers of cellular reprogramming
5. Children with autism more likely to have mitochondrial defects impacting cellular energy production
6. Scientists discover molecular switch that contributes to cellular aging process
7. The most aggressive forms of breast cancer elude cellular control mechanisms in order to expand
8. UNC scientists identify cellular communicators for cancer virus
9. NYU Courant researchers develop algebraic model to monitor cellular change
10. Novel protein critical for cellular proliferation discovered
11. Ticking of cellular clock promotes seismic changes in the chromatin landscape associated with aging
Post Your Comments:
(Date:5/12/2016)... 2016 , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/15/2016)... -- A new partnership announced today will help life ... a fraction of the time it takes today, ... insurance policies to consumers without requiring inconvenient and ... rapid testing (A1C, Cotinine and HIV) and higi,s ... pulse, BMI, and activity data) available at local ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers use ... 6000i models are higher end machines that use the more unconventional z-dimension of 20mm. ... from the bottom of the cuvette holder. , FireflySci has developed several Agilent ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... Plate® YM (Yeast and Mold) microbial test has received AOAC Research Institute approval ... of microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... launch of the Supplyframe Design Lab . Located in Pasadena, Calif., the ... future of how hardware projects are designed, built and brought to market. , ...
Breaking Biology Technology: