Navigation Links
Experiments may understate plant responses to climate
Date:5/3/2012

In an effort to understand how plants around the world will act in a warming climate, researchers have relied increasingly on experiments that measure how they respond to artificial warming. But a new study says that such experiments are underestimating potential advances in the timing of flowering and leafing four to eightfold, when compared with natural observations. As a result, species could change far more quickly than the experiments suggest, with major implications for water supplies, pollination of crops and ecosystems. The comparison, done by an interdisciplinary team from some 20 institutions in North America and Europe, appears this week in the leading journal Nature.

"Up to now, it's been assumed that experimental systems will respond the same as natural systems respondbut they don't," said coauthor Benjamin Cook, a climate modeler at the NASA Goddard Institute for Space Studies and Columbia University's Lamont-Doherty Earth Observatory. Elizabeth Wolkovich, who led the team as a postdoctoral fellow at the University of California, San Diego, said, "This suggests that predicted ecosystem changesincluding continuing advances in the start of spring across much of the globemay be far greater than current estimates based on data from experiments."

The timing of annual plant and animal life eventsthe study of which is known as phenology--has emerged as perhaps the most consistent and visible gauge of nature's response to rising temperature. Globally over the past century, land surfaces have warmed an average of about half a degree Celsius (1.25 degrees Fahrenheit), but some places, such as Alaska, are warming much more rapidly (there, about 1.8 degrees C, or over 3 degrees F). As a result, long-term historical records show that many plant species are flowering and leafing out days, or even weeks, earlier over recent decades. For instance, the meticulously recorded and celebrated blooming of Washington D.C.'s cherry blossoms has advanced about a week since the 1970s; if the trend continues, some recent projections say that by 2080 they will be coming out in February. Animals are reacting in turn, with robins showing up a month earlier in the Colorado Rockies compared to the early 1970s.

Interest in tracking phenology has grown, with the founding of organizations like the USA National Phenology Network, which uses citizen volunteers to contribute observations to studies. But because historical records are not available in many places and the future may bring ever-higher temperatures, many scientists are also trying to project by doing experiments in which they heat small field plots and measure the responses.

The researchers in the Nature study created new global databases of plant phenology, pitting calculations from experiments versus those from long-term monitoring of natural records. They included data from 50 different studies covering 1,643 species on four continents. Their analysis showed that experiments predicted every degree rise Celsius would advance plants' flowering and leafing from half a day to 1.6 days. But in looking at actual observations in nature, they found advances four times faster for leafingand over eight times faster for flowering. In sum, the natural records showed that phenological events advancing on average, five to six days per degree Celsius. The finding was strikingly consistent across species and datasets. Wolkovich said this suggests that long-term records "are converging on a consistent average response," and that future plant and ecosystem responses to climate change may be much higher than estimated from experimental data alone.

A number of factors could explain the discrepancies, said the researchers. These could include effects of longer-term climate change, including shifts in plants' genes as they adjust to warming, which would not be mirrored by shorter-term experiments. Or, it could be specific aspects of the experiments themselves, such as exactly how researchers manipulate temperatures and how accurately they measure them, they said. For instance, experimenters have used a variety of methods to increase temperatures, including cables buried in the soil, small greenhouse-like structures and heat sources placed above plants. "Some experiments get closer to nature than others," said Cook. "We need to address this by improving experiments. In the meantime, we should pay more attention to nature, because it's giving us critical information. For effective policy and conservation plans, we really need to have accurate predictions for which species will respond, and how much."

David Inouye, a University of Maryland biologist who studies ecological responses to climate change, but was not involved in the study, said, "Phenology is one of the best ways to measure the impact of changing climate. The value of this study is that it makes sense of diverse data sets, and points out the value of long-term observations of natural ecosystems."


'/>"/>

Contact: Kim Martineau
kmartine@ldeo.columbia.edu
646-717-0134
The Earth Institute at Columbia University
Source:Eurekalert  

Related biology news :

1. Thomas Jefferson is the first high school to subscribe to the Journal of Visualized Experiments
2. Louisiana Tech University researchers, NASA partner to conduct zero-gravity experiments
3. Researchers engineer functioning small intestine in laboratory experiments
4. Microfluidic device rapidly orients hundreds of embryos for high-throughput experiments
5. Free AAPS Webinar will discuss design of experiments
6. New stem cell research could reduce number of animal experiments
7. Vaccine blocks malaria transmission in lab experiments
8. Salt block unexpectedly stretches in Sandia experiments
9. Biomedical researchers invited to design experiments for the International Space Station
10. Reducing animal experiments through top-class research
11. Lack of large-scale experiments slows progress of environmental restoration
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Experiments may understate plant responses to climate
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
(Date:3/27/2017)... N.Y. , March 27, 2017  Catholic ... Information and Management Systems Society (HIMSS) Analytics for ... EMR Adoption Model sm . In addition, CHS ... of U.S. hospitals using an electronic medical record ... for its high level of EMR usage in ...
(Date:3/23/2017)... Research and Markets has announced the addition of the "Global ... 2025" report to their offering. ... The Global Vehicle Anti-Theft System Market is ... next decade to reach approximately $14.21 billion by 2025. ... all the given segments on global as well as regional levels ...
Breaking Biology News(10 mins):
(Date:4/26/2017)... ... April 26, 2017 , ... As the call for prior ... stakeholders, the discussion surrounding the topic will continue at WEDI 2017- Driving Solutions ... Angeles, Calif. Hosted by the Workgroup for Electronic Data Interchange (WEDI), the nation’s ...
(Date:4/25/2017)... R.I. , April 25, 2017 ... Inc. ("EpiVax") has licensed its novel immune-modulating technology to ... autoimmune disease and allergy. Tregitopes, pronounced ... in human immunoglobulin by EpiVax CEO Annie ... Similar to intravenous immunoglobulin G, an autoimmune disease ...
(Date:4/24/2017)... April 24, 2017  Dante Labs announced today the offer ... 850 (ca. $900). While American individuals have been able to ... Europeans can access WGS below EUR 1,000. The ... leveraging genetic information to make informed decisions about disease monitoring, ... ...
(Date:4/21/2017)... ... April 21, 2017 , ... The AMA is happy to ... graduates from across the nation. The scholarships are created through funds donated by model ... Scholarship criteria are set by the AMA Scholarship Committee, which is made up of ...
Breaking Biology Technology: