Navigation Links
Experiment finds ulcer bug's Achilles' heel
Date:12/10/2012

Experiments at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have revealed a potential new way to attack common stomach bacteria that cause ulcers and significantly increase the odds of developing stomach cancer.

The breakthrough, made using powerful X-rays from SLAC's Stanford Synchrotron Radiation Lightsource (SSRL), was the culmination of five years of research into the bacterium Helicobacter pylori, which is so tough it can live in strong stomach acid. At least half the world's population carries H. pylori and hundreds of millions suffer health problems as a result; current treatments require a complicated regimen of stomach-acid inhibitors and antibiotics.

"We were looking for a means to disrupt H. pylori's own mechanism for protecting itself against stomach acid," said Hartmut "Hudel" Luecke, a researcher at the University of California, Irvine, and principal investigator on the paper, published online Dec. 9 in Nature. With this study, he said, "We have deciphered the three-dimensional molecular structure of a very promising drug target."

Luecke and his team zeroed in on tiny channels that H. pylori uses to allow in urea from gastric juice in the stomach; it then breaks this compound into ammonia, which neutralizes stomach acid. Blocking the channels would disable this protective system, leading to a new treatment for people with the infection.

Solving the structure of the protein to find the specific area to target wasn't easy. The channels are formed by the protein embedded in the bacterium's cell membrane, and membrane proteins are notoriously difficult to crystallize, which is a prerequisite for using protein crystallography, the main technique for determining protein structures. This technique bounces X-rays off of the electrons in the crystallized protein to generate the experimental data used to build a 3-D map showing how the protein's atoms are arranged.

The challenge with membrane proteins is that they are especially hard to grow good quality crystals of, and for this experiment, said Luecke, "We needed to grow and screen thousands of crystals."

"We collected over 100 separate data sets and tried numerous structural determination techniques," said Mike Soltis, head of SSRL's Structural Molecular Biology division, who worked with Luecke and his team to create the 3-D map of the atomic structure. The final data set was measured at SSRL's highest brightness beam line (12-2), which produced the critical data that met the challenge.

"This is the hardest structure I've ever deciphered, and I've been doing this since 1984," Luecke said. "You have to try all kinds of tricks, and these crystals fought us every step of the way. But now that we have the structure, we've reached the exciting partthe prospect of creating specific, safe and effective ways to target this pathogen and wipe it out."


'/>"/>

Contact: Andy Freeberg
afreeberg@slac.stanford.edu
650-926-4359
DOE/SLAC National Accelerator Laboratory
Source:Eurekalert  

Related biology news :

1. Experiments may understate plant responses to climate
2. Foundational concept of ecology tested by experiment
3. Nicole George wins 2012 Journal of Experimental Biology Outstanding Paper Prize
4. MIT research: Study finds room to store CO2 underground
5. Study finds circle hooks lower catch rate for offshore anglers
6. LSUHSC research finds HPV-related head & neck cancers rising, highest in middle-aged white men
7. Head and body lice appear to be the same species, genetic study finds
8. Study finds peoples niceness may reside in their genes
9. Large international study finds memory in adults impacted by versions of 4 genes
10. Improved loblolly pines better for the environment, study finds
11. NIST/UMass study finds evidence nanoparticles may increase plant DNA damage
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Experiment finds ulcer bug's Achilles' heel
(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
(Date:3/29/2016)... LegacyXChange, Inc. (OTC: LEGX ... Protect are pleased to announce our successful effort to ... of writing instruments, ensuring athletes signatures against counterfeiting and ... athletes on LegacyXChange will be assured of ongoing proof ... Bill Bollander , CEO states, "By inserting ...
(Date:3/22/2016)... , March 22, 2016 ... research report "Electronic Sensors Market for Consumer Industry by ... & Others), Application (Communication & IT, Entertainment, ... - Global Forecast to 2022", published by ... is expected to reach USD 26.76 Billion ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... ... April 29, 2016 , ... Proove Biosciences, Inc ., ... the launch of the Proove Health Foundation . The Foundation is a ... the use of personalized medicine for tackling the nation’s most-pressing healthcare epidemics. As ...
(Date:4/29/2016)... ... ... Intelligent Implant Systems announced today that the two-level components for the Revolution™ Spinal ... These components expand the capabilities of the system and allow Revolution™ to be ... 2015, the company has seen significant sales growth in 1Q 2016, and the system ...
(Date:4/28/2016)... ... 28, 2016 , ... Next week on May 5 at ... technologies for tissue stem cell counting and expansion to gene-editing scientists and other ... CRISPR-based Genome Engineering in Burlington, Massachusetts. , The attention of most gene-editing scientists ...
(Date:4/27/2016)... , ... April 27, 2016 , ... The Pittcon Organizing ... 2019. Chuck has been a volunteer member of Committee since 1987. Since then, ... board of directors and treasurer and was chairman for both the program and exposition ...
Breaking Biology Technology: