Navigation Links
Experiment finds ulcer bug's Achilles' heel
Date:12/10/2012

Experiments at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have revealed a potential new way to attack common stomach bacteria that cause ulcers and significantly increase the odds of developing stomach cancer.

The breakthrough, made using powerful X-rays from SLAC's Stanford Synchrotron Radiation Lightsource (SSRL), was the culmination of five years of research into the bacterium Helicobacter pylori, which is so tough it can live in strong stomach acid. At least half the world's population carries H. pylori and hundreds of millions suffer health problems as a result; current treatments require a complicated regimen of stomach-acid inhibitors and antibiotics.

"We were looking for a means to disrupt H. pylori's own mechanism for protecting itself against stomach acid," said Hartmut "Hudel" Luecke, a researcher at the University of California, Irvine, and principal investigator on the paper, published online Dec. 9 in Nature. With this study, he said, "We have deciphered the three-dimensional molecular structure of a very promising drug target."

Luecke and his team zeroed in on tiny channels that H. pylori uses to allow in urea from gastric juice in the stomach; it then breaks this compound into ammonia, which neutralizes stomach acid. Blocking the channels would disable this protective system, leading to a new treatment for people with the infection.

Solving the structure of the protein to find the specific area to target wasn't easy. The channels are formed by the protein embedded in the bacterium's cell membrane, and membrane proteins are notoriously difficult to crystallize, which is a prerequisite for using protein crystallography, the main technique for determining protein structures. This technique bounces X-rays off of the electrons in the crystallized protein to generate the experimental data used to build a 3-D map showing how the protein's atoms are arranged.

The challenge with membrane proteins is that they are especially hard to grow good quality crystals of, and for this experiment, said Luecke, "We needed to grow and screen thousands of crystals."

"We collected over 100 separate data sets and tried numerous structural determination techniques," said Mike Soltis, head of SSRL's Structural Molecular Biology division, who worked with Luecke and his team to create the 3-D map of the atomic structure. The final data set was measured at SSRL's highest brightness beam line (12-2), which produced the critical data that met the challenge.

"This is the hardest structure I've ever deciphered, and I've been doing this since 1984," Luecke said. "You have to try all kinds of tricks, and these crystals fought us every step of the way. But now that we have the structure, we've reached the exciting partthe prospect of creating specific, safe and effective ways to target this pathogen and wipe it out."


'/>"/>

Contact: Andy Freeberg
afreeberg@slac.stanford.edu
650-926-4359
DOE/SLAC National Accelerator Laboratory
Source:Eurekalert  

Related biology news :

1. Experiments may understate plant responses to climate
2. Foundational concept of ecology tested by experiment
3. Nicole George wins 2012 Journal of Experimental Biology Outstanding Paper Prize
4. MIT research: Study finds room to store CO2 underground
5. Study finds circle hooks lower catch rate for offshore anglers
6. LSUHSC research finds HPV-related head & neck cancers rising, highest in middle-aged white men
7. Head and body lice appear to be the same species, genetic study finds
8. Study finds peoples niceness may reside in their genes
9. Large international study finds memory in adults impacted by versions of 4 genes
10. Improved loblolly pines better for the environment, study finds
11. NIST/UMass study finds evidence nanoparticles may increase plant DNA damage
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Experiment finds ulcer bug's Achilles' heel
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... -- Today HYPR Corp. , leading innovator in ... the HYPR platform is officially FIDO® Certified . ... that empowers biometric authentication across Fortune 500 enterprises and ... 15 million users across the financial services industry, however ... suites and physical access represent a growing portion of ...
(Date:3/30/2017)... 30, 2017  On April 6-7, 2017, Sequencing.com will ... hackathon at Microsoft,s headquarters in ... focus on developing health and wellness apps that provide ... the Genome is the first hackathon for personal ... largest companies in the genomics, tech and health industries ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... Irvine, ca (PRWEB) , ... October 12, 2017 ... ... for the Surgical Wound Market with the addition of its newest module, US ... the $1.2B market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and ...
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 ... enabling overexpression experiments and avoiding the use of exogenous expression plasmids. The simplicity ... for performing systematic gain-of-function studies. , This complement to loss-of-function studies, such ...
(Date:10/11/2017)... 2017  VMS BioMarketing, a leading provider of patient support ... Nurse Educator (CNE) network, which will launch this week. The ... health care professionals to enhance the patient care experience by ... other health care professionals to help women who have been ... ...
(Date:10/11/2017)... ... 11, 2017 , ... Singh Biotechnology today announced that the ... its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 single ... the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation of ...
Breaking Biology Technology: