Navigation Links
Evolutionary 'winners' and 'losers' revealed in collaborative study

HOUSTON, March 22, 2011 In a study that literally analyzed competing bacteria fighting it out to the death, a University of Houston (UH) researcher and his colleagues identified evolutionary 'winners' and 'losers.' Continuing research to understand the basis of these fates may become a useful tool is designing roadblocks to antibiotic resistance.

In collaboration with scientists at Michigan State University (MSU), UH evolutionary biologist Timothy Cooper and his graduate student Utpala Shrestha were co-authors on a paper titled "Second-Order Selection for Evolvability in a Large Escherichia coli Population." The report appeared March 18 in Science, the world's leading journal of original scientific research, global news and commentary.

"The project found that bacteria growing for thousands of generations in an environment containing glucose as the only food had evolved to be better at getting better," Cooper said. "We found that two lineages of bacteria arose and competed in a single experimental population. The lineage that initially grew more slowly, yet had the potential to evolve more rapidly, was the evolutionary 'winner.' This is surprising because it's usually thought that competition is decided by what competitors can do now and not what they are capable of in the future."

As genetic changes occurred, making some individuals better competitors on the glucose food, other individuals that did not quickly get their own beneficial mutations were outcompeted and went extinct. Down the line, understanding the benefits of evolving quickly like this will be a useful tool to predict such things as antibiotic resistance and the evolution of infectious disease. Cooper said this knowledge may one day help scientists design intervention strategies that make the evolution of these traits less likely to occur.

The work done by Cooper and Shrestha at UH established the specific genetic changes occurring during this bacterial evolution experiment that caused the change in their ability to evolve further. They discovered the genetic change that was important for determining which bacteria would prevail and which were destined to become extinct.

"Our collaborators isolated individual bacteria from a population that had evolved for 500 generations and sequenced their entire DNA genome to determine all the changes that had occurred," Cooper said. "By isolating these changes and adding them in defined combinations back into the original ancestral strain, we were able to determine their individual effects."

Reminiscent of Aesop's lesson that 'slow and steady wins the race,' Cooper adds that even bacteria can benefit from a long-term view, with their experiment showing that bacteria that adapted, slowly but consistently, outcompeted those that initially grew quickly but then ran out of ways to improve.

With much of his work based on experimental evolution, which is the lab-based study of evolving populations, Cooper's motivation for this experiment comes from wanting to understand the factors involved in evolution of organisms to better fit their environments. Using bacterial and computational experimental systems he aims to identify and integrate these mechanisms and examine how they depend on genetic and environmental factors.

"Bacteria provide an ideal model system to address these questions, because they evolve so quickly, undergoing thousands of generations in only a few years," Cooper said. "Additionally, we can now sequence their entire genomes and determine the genetic changes that lead to improvements in their ability to grow."

Funded by the National Science Foundation and the Defense Advanced Research Projects Agency, this work was a multidisciplinary effort done in collaboration with researchers in zoology, microbiology and molecular genetics at MSU. In addition to UH's Cooper and Shrestha, the MSU team consisted of Richard Lenski, Jeffrey Barrick, Robert Woods and Mark Kauth. Woods has since moved on to the University of Michigan and Barrick is currently at the University of Texas at Austin.


Contact: Lisa Merkl
University of Houston

Related biology news :

1. Homoplasy: A good thread to pull to understand the evolutionary ball of yarn
2. UMass Amherst biologists use GPS to map bats teeth to explore evolutionary adaptations to diet
3. New evolutionary research disproves living missing link theories
4. Different evolutionary paths lead plants and animals to the same crossroads
5. New research traces evolutionary path of multidrug-resistant strep bacteria
6. SU scientists find that in the evolutionary mating game, brawn and stealth rule
7. Extinctions, loss of habitat harm evolutionary diversity
8. Evolutionary arms race between smut fungi and maize plants
9. Powdery mildew at an evolutionary dead end
10. SomaLogic researchers describe revolutionary new approach to protein analysis and application to early diagnosis of lung cancer
11. Study rewrites the evolutionary history of C4 grasses
Post Your Comments:
Related Image:
Evolutionary 'winners' and 'losers' revealed in collaborative study
(Date:11/12/2015)... golden retriever that stayed healthy despite having the gene ... new lead for treating this muscle-wasting disorder, report scientists ... and Harvard and the University of São Paolo in ... pinpoints a protective gene that boosts muscle regeneration, ... Children,s lab of Lou Kunkel , PhD, is ...
(Date:11/12/2015)... 2015   Growing need for low-cost, easy ... been paving the way for use of biochemical ... analytes in clinical, agricultural, environmental, food and defense ... in medical applications, however, their adoption is increasing ... continuous emphasis on improving product quality and growing ...
(Date:11/10/2015)... , Nov. 10, 2015  In this ... the basis of product, type, application, disease ... in this report are consumables, services, software. ... are safety biomarkers, efficacy biomarkers, and validation ... report are diagnostics development, drug discovery and ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015  Twist Bioscience, a ... Emily Leproust, Ph.D., Twist Bioscience chief executive officer, ... Conference on December 1, 2015 at 3:10 p.m. ... York City. --> ... . Twist Bioscience is on Twitter. Sign up ...
(Date:11/24/2015)... , ... November 24, 2015 , ... ... OrthoAccel® Technologies, Inc., on being named to Deloitte's 2015 Technology Fast 500 list ... facility, OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device that speeds up ...
(Date:11/24/2015)... CHARLOTTESVILLE, Va. , Nov. 24, 2015 /PRNewswire/ ... company focused on discovering drugs for metabolic disorders, ... Watkins to its Board of Directors (BOD). ... executive officer of Human Genome Sciences (HGS), and ... Industry Organization. Jim Powers , Chairman ...
(Date:11/24/2015)... ... November 24, 2015 , ... Whitehouse Laboratories is pleased ... The new stand-alone facility will be strictly dedicated to basic USP 61, USP 62 ... clients the chance to have complete chemistry and micro testing performed by one supplier. ...
Breaking Biology Technology: