Navigation Links
Evolution can cause a rapid reduction in genome size
Date:4/21/2011

This release is available in German.

It would appear reasonable to assume that two closely related plant species would have similar genetic blueprints. However, scientists from the Max Planck Institute for Developmental Biology in Tbingen, working in cooperation with an international research team have now decoded, for the first time, the entire genome of the lyre-leaved rock cress (Arabidopsis lyrata), a close relative of the thale cress (Arabidopsis thaliana), the model plant used by geneticists. They discovered that the genome of the lyre-leaved rock cress is fifty percent bigger than that of the thale cress. Moreover, these changes arose over a very short period in evolutionary terms. This new high-quality genome analysis will provide a basis for further detailed comparative studies on the function, ecology and evolution of the plant genus Arabidopsis.

Genome size among the different species of the plant kingdom varies significantly. At the upper end of the currently known spectrum, scientists have identified the herb Paris or true-lover's knot (Paris quadrifolia), whose genome is a good thousand times longer than that of the carnivorous plants from the genus Genlisea. However, these plants are so distantly related that it is almost impossible to identify the evolutionary forces at work in the individual species. Therefore, researchers from Detlef Weigel's Department of Molecular Biology at the Max Planck Institute for Developmental Biology in Tbingen working in cooperation with an international research team selected for their genome study a species closely related to the thale cress (Arabidopsis thaliana), probably the most widely studied flowering plant in genetics. The species in question was lyre-leaved rock cress (Arabidopsis lyrata) which, unlike thale cress, is unable to self-fertilise. "Thale cress and lyre-leaved rock cress shared an ancestor around ten million years ago, after which their evolutionary lineages diverged," explains Ya-Long Guo from the MPI for Developmental Biology.

The genome of the thale cress has been fully decoded for some time now: it has a sequence of 125 million base pairs, which are also referred to as the letters of the genetic alphabet, and includes 27,025 genes distributed on five chromosomes. The sequencing of the genome of a North American phylum of the lyre-leaved rock cress yielded a base sequence which, at 207 million base pairs or letters, is over 50 percent bigger than that of the thale cress. However, the scientists assume that these letter sequences do not form meaningful words and texts in all areas of the genome, and that the difference between the two species of the mustard family (Brassicaceae), in terms of their number of genes, is not quite so significant: the lyre-leaved rock cress has around 32,670 genes distributed on eight chromosomes.

The researchers also established that considerable elements have been lost from some parts of the thale cress genome. However, most of the differences in the genome size of the two species are accounted for by hundreds of thousands of small deletions which mostly arose in regions located between the genes or in the transposons, sequences of DNA that can move. A smaller genome appears to offer advantages during the natural selection of individuals. This is backed up by the following detail from the new findings: transposons that have a negative effect on the surrounding genes appear to be particularly prone to deletion through selection. According to the scientists, elements are still being lost from the thale cress genome. "We assume that the genetic make-up of the plants' shared ancestors is far more extensively preserved in the lyre-leaved rock cress they also had eight chromosomes. We consider the thale cress with its more streamlined genome as the form derived through evolution," says Ya-Long Guo.

What surprised the Tbingen-based researchers was how much bigger the lyre-leaved rock cress genome was than that of the thale cress. Through their analysis, the scientists have laid the foundations for further insights into how evolution in plants can take effect on the level of genes and molecules.


'/>"/>

Contact: Detlef Weigel
detlef.weigel@tuebingen.mpg.de
49-707-160-11410
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Worm genome offers clues to evolution of parasitism
2. Advance offers revolution in food safety testing
3. Mass extinctions and the evolution of dinosaurs
4. Egalitarian revolution in the Pleistocene?
5. Reproducing early and often is the key to rapid evolution in plants
6. Illuminating biology: An evolutionary perspective
7. Biologists, educators recognize excellence in evolution education
8. Revealing the evolutionary history of threatened sea turtles
9. Details of evolutionary transition from fish to land animals revealed
10. Genetic based human diseases are an ancient evolutionary legacy
11. Wake Forest plays integral role in effort to revolutionize vehicle safety
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Evolution can cause a rapid reduction in genome size
(Date:11/29/2016)... 29, 2016 BioDirection, a privately held medical ... the objective detection of concussion and other traumatic brain ... completed a meeting with the U.S. Food and Drug ... Pre-Submission Package. During the meeting company representatives reviewed plans ... precursor to commencement of a planned pilot trial. ...
(Date:11/22/2016)... According to the new market research report "Biometric System Market by Authentication ... (Hardware and Software), Function (Contact and Non-contact), Application, and Region - Global ... from USD 10.74 Billion in 2015 to reach USD 32.73 Billion by ... Continue Reading ... ...
(Date:11/17/2016)... -- AIC announces that it has just released a new white paper authored by Zettar ... high speed data transfer storage solutions. Photo - http://photos.prnewswire.com/prnh/20161116/440463 ... ... ... Setting up a high performance computing or HPC system can be ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... OXFORD, England , December 8, 2016 /PRNewswire/ ... (OGT), das Unternehmen für Molekulargenetik, erweitert seine Palette ... SureSeq myPanel™ NGS Custom FH Panels, das ein ... Hypercholesterinämie (FH) ermöglicht. Das Panel bietet eine Erkennung ... Number Variations (CNV) mit einem einzigen kleinen Panel ...
(Date:12/8/2016)... , ... December 08, 2016 , ... ... in the World Technology Awards. uBiome is one of just six company finalists ... categories. , In addition to uBiome, companies nominated as finalists in this year’s ...
(Date:12/8/2016)... HOWELL, N.J. , Dec. 8, 2016 /PRNewswire/ ... aquatic augmentation remediation technologies and selected NewTechBio,s NT-MAX ... , a microbial based beneficial bacteria, in conjunction ... Inc., to correct deficiencies with National Pollutant Discharge ... basin 281-8H has experienced a steady history of ...
(Date:12/7/2016)... ... December 07, 2016 , ... ... that “in the setting of previously treated, advanced pancreatic cancer, liquid biopsies are ... optimal patient population and timing of blood sampling may improve the value of ...
Breaking Biology Technology: