Navigation Links
Erratic proteins: New insights into a transport mechanism
Date:9/30/2013

The outer membrane of bacteria contains many proteins that form tiny pores. They are important for absorbing nutrients and transmitting signals into the cell. The research group of Sebastian Hiller, Professor of Structural Biology at the Biozentrum, University of Basel, has now shown for the first time at atomic resolution, that these pore proteins are transported in an unstructured, constantly changing state to the outer bacterial membrane. This landmark study was recently published in the scientific journal "Nature Structural and Molecular Biology".

The cell membrane of a bacterium is a natural barrier to the environment and at the same time, their door to the world. Gram-negative bacteria surround themselves with two membrane layers. They communicate with the environment through proteins that form tiny pores in the outer cell membrane. How these membrane proteins reach their target destination in the bacterium Escherichia coli could now be observed for the first time at the atomic level by Professor Sebastian Hiller, from the Biozentrum at the University of Basel.

Molecular "ferry" ensures safe protein transport

New proteins are produced in the protein factories inside the cell. Proteins destined for the outer membrane require a molecular "ferry" to remain intact as they pass the aqueous layer between the two membranes. The protein Skp is such a ferry, transporting the not yet folded proteins across the periplasmic space. At the outer membrane, they fold into their three-dimensional structure and incorporate into the outer membrane.

The current study by Hiller provides an exceptional and deep insight into this transport mechanism. The membrane protein is loosely embedded in the solid structure of Skp during transport and does not adopt on a defined spatial structure itself. "Amazingly, the unfolded protein changes its state constantly faster than thousand times per second and more than ten million times during the crossing," explained Hiller. "Only through employing modern nuclear magnetic resonance spectroscopy, it has become possible to detect this dynamic behavior within Skp." Transporting the membrane protein in such a changing state does not require energy and allows for its rapid release at the destination.

Dynamic transport as a general principle

Although the structure of Skp has been known for a long time, the current study shows that the dynamics of the Skp-membrane protein complex is important for the formation of the outer membrane proteins. With the atomic resolution measurements, Hiller and his team were also able to uncover a general principle how proteins can be transported without requiring energy. In the future, the team of scientists wants to investigate further proteins that are involved in the transport and folding process.

The cell membrane of a bacterium is a natural barrier to the environment and at the same time, their door to the world. Gram-negative bacteria surround themselves with two membrane layers. They communicate with the environment through proteins that form tiny pores in the outer cell membrane. How these membrane proteins reach their target destination in the bacterium Escherichia coli could now be observed for the first time at the atomic level by Professor Sebastian Hiller, from the Biozentrum at the University of Basel.

Molecular "ferry" ensures safe protein transport

New proteins are produced in the protein factories inside the cell. Proteins destined for the outer membrane require a molecular "ferry" to remain intact as they pass the aqueous layer between the two membranes. The protein Skp is such a ferry, transporting the not yet folded proteins across the periplasmic space. At the outer membrane, they fold into their three-dimensional structure and incorporate into the outer membrane.

The current study by Hiller provides an exceptional and deep insight into this transport mechanism. The membrane protein is loosely embedded in the solid structure of Skp during transport and does not adopt on a defined spatial structure itself. "Amazingly, the unfolded protein changes its state constantly faster than thousand times per second and more than ten million times during the crossing," explained Hiller. "Only through employing modern nuclear magnetic resonance spectroscopy, it has become possible to detect this dynamic behavior within Skp." Transporting the membrane protein in such a changing state does not require energy and allows for its rapid release at the destination.

Dynamic transport as a general principle

Although the structure of Skp has been known for a long time, the current study shows that the dynamics of the Skp-membrane protein complex is important for the formation of the outer membrane proteins. With the atomic resolution measurements, Hiller and his team were also able to uncover a general principle how proteins can be transported without requiring energy. In the future, the team of scientists wants to investigate further proteins that are involved in the transport and folding process.


'/>"/>

Contact: Olivia Poisson
olivia.poisson@unibas.ch
University of Basel
Source:Eurekalert

Related biology news :

1. Eyewear Market 2014 Insights and System Refresher Report
2. Global analysis reveals new insights into the ribosome -- with important implications for disease
3. Potential diagnostic marker for zinc status offers insights into the effects of zinc deficiency
4. New insights into neuroblastoma tumor suppressor may provide clues for improved treatment
5. UCLA life scientists present new insights on climate change and species interactions
6. Insights into deadly coral bleaching could help preserve reefs
7. New insights into how genes turn on and off
8. New insights into the development of the heart
9. Peach genome offers insights into breeding strategies for biofuels crops
10. Novel insights into the evolution of protein networks
11. Insights into the immune system, from the fates of individual T cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/31/2016)... March 31, 2016  Genomics firm Nabsys has completed ... Barrett Bready , M.D., who returned to the ... original technical leadership team, including Chief Technology Officer, ... Development, Steve Nurnberg and Vice President of Software and ... company. Dr. Bready served as CEO of ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... In a new ... in Denmark detail how a patient who developed lymphedema after being treated for breast ... results could change the paradigm for dealing with this debilitating, frequent side effect of ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
Breaking Biology Technology: