Navigation Links
Erg gene key to blood stem cell 'self-renewal'
Date:2/16/2011

Scientists from the Walter and Eliza Hall Institute have begun to unravel how blood stem cells regenerate themselves, identifying a key gene required for the process.

The discovery that the Erg gene is vitally important to blood stem cells' unique ability to self-renew could give scientists new opportunities to use blood stem cells for tissue repair, transplantation and other therapeutic applications.

Professor Doug Hilton, Dr Samir Taoudi and colleagues from the institute's Molecular Medicine and Cancer and Haematology divisions led the study. Dr Taoudi said the research aimed to understand how blood stem cells are made.

"One of the key features of blood stem cells, one that could be exploited for therapeutic use, is their ability to regenerate or renew themselves," Dr Taoudi said. "However, relatively little is known about how this occurs, or the molecular pathways that specifically control regeneration."

Blood stem cells are required to produce and maintain the blood system throughout an organism's lifetime. They are multipotent cells, meaning they are able to form any cell of the blood system (but not other cells), and they self-renew, so they are a source of endless supply. However, one major barrier to their therapeutic use is that the cells can only be isolated in numbers too low for practical use and efforts to expand the number of cells often causes them to turn into more mature cells.

"At the moment, if you take stem cells from a person and try to expand them, many of the stem cells lose their ability to regenerate," Dr Taoudi said. "The practical aim of our research is to find ways in which you could take stem cells collected from bone marrow or cord blood and 'switch on' expression of particular sets of genes, encouraging the stem cells to expand, essentially creating your own endless supply of blood stem cells."

Institute researchers had previously discovered that ERG was vital for the proper function of adult blood stem cells. They decided to look at blood stem cells in a developing embryo, a time when the cells are particularly active, to determine ERG's role in stem cell production and maintenance.

"We found that during development, ERG was not needed for the original blood stem cells to be made, or to produce mature blood cells," Dr Taoudi said. "But without ERG, these new blood stem cells rapidly decreased as they divided to produce more blood, so that they were almost completely exhausted by the time the mouse was born."

Further testing revealed that two other genes important in embryonic development, GATA2 and RUNX1, were controlled by ERG at the blood producing stage of development.

"These genes are called transcription factors, they are the 'switches' that turn on and off other genes," Dr Taoudi said. "Individually, these genes are not essential for regeneration, but if you lose both, the stem cells are quickly exhausted. This is a key part of the puzzle, but we will continue to work to find out how these genes directly control self-renewal, and the signals that actually tell the stem cell to regenerate."

Dr Taoudi said that although the finding had promise for the future therapeutic use of blood stem cells, there was still a lot of work to be done.

"We have found part of the pathway required for the expansion of blood stem cells under normal conditions, but from a translation perspective, we still need to establish whether increasing expression of these genes will actually lead to expansion in a culture dish," he said.


'/>"/>

Contact: Penny Fannin
fannin@wehi.edu.au
61-393-452-345
Walter and Eliza Hall Institute
Source:Eurekalert  

Related biology news :

1. Blood-clotting protein linked to cancer and septicemia
2. Conversion of brain tumor cells into blood vessels thwarts treatment efforts
3. Red blood cell hormone modulates the immune system
4. Common antibiotics and blood pressure medication may result in hospitalization
5. Blood pressure control system found in kidneys structural units
6. New method will triple amount of genetic information from newborn blood spot screenings
7. Biomedical breakthrough: Blood vessels for lab-grown tissues
8. Researchers investigate why a limited number of white blood cells are attracted to injured tissue
9. UTHealth studies cord blood stem cells for pediatric traumatic brain injury
10. High red blood cell folate levels linked to silenced tumor-suppressors
11. Cord blood cell transplantation provides improvement for severely brain-injured child
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Erg gene key to blood stem cell 'self-renewal'
(Date:4/17/2017)... 17, 2017 NXT-ID, Inc. (NASDAQ: NXTD ... filing of its 2016 Annual Report on Form 10-K on Thursday ... ... available in the Investor Relations section of the Company,s website at ... website at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/5/2017)... KEY FINDINGS The global market for stem ... 25.76% during the forecast period of 2017-2025. The rise ... growth of the stem cell market. Download ... The global stem cell market is segmented on the ... cell market of the product is segmented into adult ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 11, 2017 , ... The CRISPR-Cas9 system has ... and avoiding the use of exogenous expression plasmids. The simplicity of programming this ... gain-of-function studies. , This complement to loss-of-function studies, such as with RNAi ...
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , ... of Cancer Research, London (ICR) and ... with SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple ... as MUK nine . The University of ... is partly funded by Myeloma UK, and ICR will perform ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it exclusive ... a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... business process optimization firm for the life sciences and healthcare industries, announces a ... in San Francisco. , The presentation, “Automating GxP Validation for Agile Cloud Platforms,” ...
Breaking Biology Technology: