Navigation Links
Epileptic seizures may be linked to an ancient gene family
Date:8/1/2010

New research points to a genetic route to understanding and treating epilepsy. Timothy Jegla, an assistant professor of biology at Penn State University, has identified an ancient gene family that plays a role in regulating the excitability of nerves within the brain.

"In healthy people, nerves do not fire excessively in response to small stimuli. This function allows us to focus on what really matters. Nerve cells maintain a threshold between rest and excitement, and a stimulus has to cross this threshold to cause the nerve cells to fire," Jegla explained. "However, when this threshold is set too low, neurons can become hyperactive and fire in synchrony. As excessive firing spreads across the brain, the result is an epileptic seizure."

Managing this delicate rest-excitement balance are ion channels -- neuronal "gates" that control the flow of electrical signals between cells. While sodium and calcium channels help to excite neurons, potassium channels help to suppress signaling between cells, increasing the threshold at which nerves fire. However, the genetic mechanisms that control the potassium channels and set this threshold are not fully understood. Jegla's team focused on a particular potassium-channel gene -- called Kv12.2 -- that is active in resting nerve cells and is expressed in brain regions prone to seizure. "We decided that Kv12.2 was a good candidate for study because it is part of an old gene family that has been conserved throughout animal evolution," Jegla said. "This ancient gene family probably first appeared in the genomes of sea-dwelling creatures prior to the Cambrian era about 542-million years ago. It is still with us and doing something very important in present-day animals." Previous studies have suggested that the Kv12.2 potassium channel has a role in spatial memory, but Jegla and his team focused on how it might be related to seizure disorders.

In collaboration with Jeffrey Noebels at Baylor College of Medicine, the team used an electroencephalography (EEG) device to monitor the brains of mice. They found that mice missing the Kv12.2 gene did indeed have frequent seizures, albeit without convulsions. The team then stimulated mice with a chemical that induces convulsive seizures. They found that normal mice had a much higher convulsive-seizure threshold than mice with a defective Kv12.2 gene. The team also found the same results when they used a chemical inhibitor to block the Kv12.2 potassium channel in normal mice.

"In mice without a functioning Kv12.2 gene, nerve cells had abnormally low firing thresholds. Even small stimuli caused seizures," Jegla explained. "We think that this potassium channel plays a role in the brain's ability to remain 'quiet' and to respond selectively to strong stimuli."

Jegla hopes to open up new avenues of epilepsy research by studying whether activation of the Kv12.2 potassium channel in normal animals can block seizures. "Ion-channel defects have been identified in inherited seizure disorders, but many types of epilepsy don't have a genetic cause to begin with," Jegla explained. "They are often caused by environmental factors, such as a brain injury or a high fever. However, the most effective drugs used to treat epilepsy target ion channels. If we can learn more about how ion channels influence seizure thresholds, we should be able to develop better drugs with fewer side effects."


'/>"/>

Contact: Barbara K. Kennedy
science@psu.edu
814-863-4682
Penn State
Source:Eurekalert  

Related biology news :

1. Scripps research study opens the door to new class of drugs for epileptic seizures
2. Bulls-eye electrode helps interpret thoughts, deliver stimulus to aid paralyzed, epileptic patients
3. Camphor-containing products may cause seizures in children
4. LSUHSC awarded $2 million dollar grant to prevent pneumonia linked to immune deficiency
5. Exploratory study: High BMI linked to proximity to convenience stores
6. Flowering and freezing tolerance linked in wheat, study shows
7. Gestational diabetes linked to serotonin and dietary protein
8. Researchers identify gene linked to hereditary incontinence
9. Researchers find gene linked to birth defects
10. Protein regulates enzyme linked to Alzheimers disease
11. Emergence of fungal plant diseases linked to ecological speciation
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Epileptic seizures may be linked to an ancient gene family
(Date:4/18/2017)...  Socionext Inc., a global expert in SoC-based imaging and computing ... M820, which features the company,s hybrid codec technology. A demonstration utilizing ... Inc., will be showcased during the upcoming Medtec Japan at Tokyo ... Las Vegas Convention Center April 24-27. ... Click here for an image ...
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced Design ... will feature emerging and evolving technology through its ... Summits will run alongside the expo portion of the ... panels and demonstrations focused on trending topics within 3D ... design and manufacturing event will take place June 13-15, 2017 ...
(Date:4/11/2017)... BEACH GARDENS, Fla. , April 11, 2017 ... identity management and secure authentication solutions, today announced ... contract by Intelligence Advanced Research Projects Activity (IARPA) ... for IARPA,s Thor program. "Innovation has ... onset and IARPA,s Thor program will allow us ...
Breaking Biology News(10 mins):
(Date:4/26/2017)... ... April 26, 2017 , ... Looking for ... and cooking events company, offers one-of-a-kind gifts, ranging from gourmet cooking experiences to ... cuisine, and guests leave inspired with new cooking tips and techniques, thanks to ...
(Date:4/26/2017)... ... April 26, 2017 , ... NextSteps 2017, NetDimensions’ annual ... America this May on the following dates: , ?    London, UK from May ... the Learning and Performance Institute will be the opening keynote speaker at ...
(Date:4/25/2017)... ... April 25, 2017 , ... ... is pleased to announce the company is now a certified iMedNet eClinical and ... software certification enables the company’s clinical research team to build, customize and manage ...
(Date:4/24/2017)... , ... April 24, 2017 , ... ... thermal denaturation in a cellular milieu; however, the broad application of this cellular ... simple platforms with sensitive quantitative readouts. Cell-based thermal stabilization assays are valuable methods ...
Breaking Biology Technology: