Navigation Links
Epigenetic signatures direct the repair potential of reprogrammed cells
Date:3/14/2012

BOSTON (March 14, 2012) A research team has identified epigenetic signatures, markers on DNA that control transient changes in gene expression, within reprogrammed skin cells. These signatures can predict the expression of a wound-healing protein in reprogrammed skin cells or induced pluripotent stem cells (iPSCs), cells that take on embryonic stem cell properties. Understanding how the expression of the protein is controlled brings us one step closer to developing personalized tissue regeneration strategies using stem cells from a patient, instead of using human embryonic stem cells. The study was published in the Journal of Cell Science.

When skin cells are reprogrammed, many of their cellular properties are recalibrated as they aquire stem cell properties and then are induced to become skin cells again. In order for these "induced" stem cells to be viable in treatment for humans (tissue regeneration, personalized wound healing therapies, etc.), researchers need to understand how they retain or even improve their characteristics after they are reprogrammed.

Since the initial discovery of reprogramming, scientists have struggled with the unpredictability of the cells due to the many changes that occur during the reprogramming process. Classifying specific epigenetic signatures, as this study did, allows researchers to anticipate ways to produce cell types with optimal properties for tissue repair while minimizing unintended cellular abnormalities.

The researchers used reprogrammed cells to generate three-dimensional connective tissue that mimics an in vivo wound repair environment. To verify the role of the protein (PDGFRbeta) in tissue regeneration and maintenance, the team blocked its cellular expression, which impaired the cells' ability to build tissue.

"We determined that successful tissue generation is associated with the expression of PDGFRbeta. Theoretically, by identifying the epigenetic signatures that indicate its expression, we can determine the reprogrammed cells' potential for maintaining normal cellular characteristics throughout development," said first author Kyle Hewitt, PhD, a graduate of the cell, molecular & developmental biology program at the Sackler School of Graduate Biomedical Sciences, and postdoctoral associate in the Garlick laboratory at Tufts University School of Dental Medicine (TUSDM).

"The ability to generate patient-specific cells from the reprogrammed skin cells may allow for improved, individualized, cell-based therapies for wound healing. Potentially, these reprogrammed cells could be used as a tool for drug development, modeling of disease, and transplantation medicine without the ethical issues associated with embryonic stem cells," said senior author Jonathan Garlick, DDS, PhD, a professor in the department of oral and maxillofacial pathology and director of the division of tissue engineering and cancer biology at TUSDM.

Jonathan Garlick is also a member of the cell, molecular & developmental biology program faculty at the Sackler School and the director of the Center for Integrated Tissue Engineering (CITE) at TUSDM.


'/>"/>

Contact: Jessica McGovern
jessica.mcgovern@tufts.edu
617-636-6586
Tufts University, Health Sciences Campus
Source:Eurekalert

Related biology news :

1. CSHL scientists discover a new way in which epigenetic information is inherited
2. CSHL researchers map changing epigenetic modifications that enable transposons to run amok
3. Growth of new brain cells requires epigenetic switch
4. Ali Shilatifard and colleagues aim to clarify the definition of epigenetics
5. New nucleotide could revolutionize epigenetics
6. New piece found in the puzzle of epigenetics
7. Scientists take early steps toward mapping epigenetic variability
8. Epigenetics could help researchers determine any risks associated with low-dose radiation
9. Genomes of identical twins reveal epigenetic changes that may play role in lupus
10. UBC geneticist reveals molecular view of key epigenetic regulator
11. Epigenetic concepts offer new approach to degenerative disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access System ... over the next decade to reach approximately $1,580 million by 2025. ... forecasts for all the given segments on global as well as ...
Breaking Biology News(10 mins):
(Date:9/18/2017)... ... September 18, 2017 , ... ... the move of the SPIE Digital Library ( http://www.spiedigitallibrary.org ) on 15 August ... create an improved user experience and incorporate a number of enhancements and new ...
(Date:9/17/2017)... (PRWEB) , ... September 17, 2017 , ... ... from the South Korean Ministry of Food and Drug Safety (KMFDS) for an ... GLS-5300, against the Middle East Respiratory Syndrome coronavirus (MERS-CoV). The study in Korea ...
(Date:9/14/2017)... UK (PRWEB) , ... September 14, 2017 , ... ... most innovative minds in pharma and biotech at the third annual DrugDev Summit, ... conference that brings together the world’s most progressive clinical research leaders for best ...
(Date:9/14/2017)... Australia (PRWEB) , ... September 14, 2017 , ... ... first viscoelastic Freedom Lumbar Disc case in Australia. Dr. Steven Yang completed the ... pain as a result of a degenerative lumbar disc at level L5-S1. The ...
Breaking Biology Technology: