Navigation Links
Epigenetic 'memory' key to nature versus nurture
Date:7/24/2011

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) at the John Innes Centre have made a discovery, reported this evening (24 July) in Nature, that explains how an organism can create a biological memory of some variable condition, such as quality of nutrition or temperature. The discovery explains the mechanism of this memory a sort of biological switch and how it can also be inherited by offspring.

The work was led by Professor Martin Howard and Professor Caroline Dean at the John Innes Centre, which receives strategic funding from BBSRC. Funding for the project came from BBSRC, the European Research Council, and The Royal Society.

Professor Dean said "There are quite a few examples that we now know of where the activity of genes can be affected in the long term by environmental factors. And in some cases the environment of an individual can actually affect the biology or physiology of their offspring but there is no change to the genome sequence."

For example, some studies have shown that in families where there was a severe food shortage in the grandparents' generation, the children and grandchildren have a greater risk of cardiovascular disease and diabetes, which could be explained by epigenetic memory. But until now there hasn't been a clear mechanism to explain how individuals could develop a "memory" of a variable factor, such as nutrition.

The team used the example of how plants "remember" the length of the cold winter period in order to exquisitely time flowering so that pollination, development, seed dispersal and germination can all happen at the appropriate time.

Professor Howard said "We already knew quite a lot about the genes involved in flowering and it was clear that something goes on in winter that affects the timing of flowering, according to the length of the cold period."

Using a combination of mathematical modelling and experimental analysis the team has uncovered the system by which a key gene called FLC is either completely off or completely on in any one cell and also later in its progeny. They found that the longer the cold period, the higher the proportion of cells that have FLC stably flipped to the off position. This delays flowering and is down to a phenomenon known as epigenetic memory.

Epigenetic memory comes in various guises, but one important form involves histones - the proteins around which DNA is wrapped. Particular chemical modifications can be attached to histones and these modifications can then affect the expression of nearby genes, turning them on or off. These modifications can be inherited by daughter cells, when the cells divide, and if they occur in the cells that form gametes (e.g. sperm in mammals or pollen in plants) then they can also pass on to offspring.

Together with Dr Andrew Angel (also at the John Innes Centre), Professor Howard produced a mathematical model of the FLC system. The model predicted that inside each individual cell, the FLC gene should be either completely activated or completely silenced, with the fraction of cells switching to the silenced state increasing with longer periods of cold.

To provide experimental evidence to back up the model, Dr Jie Song in Prof. Dean's group used a technique where any cell that had the FLC gene switched on, showed up blue under a microscope. From her observations, it was clear that cells were either completely switched or not switched at all, in agreement with the theory.

Dr Song also showed that the histone proteins near the FLC gene were modified during the cold period, in such a way that would account for the switching off of the gene.

Professor Douglas Kell, Chief Executive, BBSRC said "This work not only gives us insight into a phenomenon that is crucial for future food security the timing of flowering according to climate variation but it uncovers an important mechanism that is at play right across biology. This is a great example of where the research that BBSRC funds can provide not only a focus on real life problems, but also a grounding in the fundamental tenets of biology that will underpin the future of the field. It also demonstrates the value of multidisciplinary working at the interface between biology, physics and mathematics."


'/>"/>

Contact: Nancy Mendoza
press.office@bbsrc.ac.uk
44-179-341-3355
Biotechnology and Biological Sciences Research Council
Source:Eurekalert

Related biology news :

1. CSHL scientists discover a new way in which epigenetic information is inherited
2. CSHL researchers map changing epigenetic modifications that enable transposons to run amok
3. Growth of new brain cells requires epigenetic switch
4. Ali Shilatifard and colleagues aim to clarify the definition of epigenetics
5. New nucleotide could revolutionize epigenetics
6. New piece found in the puzzle of epigenetics
7. Scientists take early steps toward mapping epigenetic variability
8. Epigenetics could help researchers determine any risks associated with low-dose radiation
9. Genomes of identical twins reveal epigenetic changes that may play role in lupus
10. UBC geneticist reveals molecular view of key epigenetic regulator
11. Epigenetic concepts offer new approach to degenerative disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/23/2017)... the first robotic gym for the rehabilitation and functional motor sense evaluation ... Genoa, Italy . The first 30 robots will be available from ... . The technology was developed and patented at the IIT laboratories ... Technology thanks to a 10 million euro investment from entrepreneur Sergio Dompè. ... ...
(Date:4/19/2017)... , April 19, 2017 The ... vendor landscape is marked by the presence of several ... however held by five major players - 3M Cogent, ... companies accounted for nearly 61% of the global military ... companies in the global military biometrics market boast global ...
(Date:4/11/2017)... April 11, 2017 Crossmatch®, a globally-recognized ... solutions, today announced that it has been awarded ... Projects Activity (IARPA) to develop next-generation Presentation Attack ... "Innovation has been a driving force within ... will allow us to innovate and develop new ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 12, 2017 , ... AMRI, a global contract research, development ... patient outcomes and quality of life, will now be offering its impurity solutions ... new regulatory requirements for all new drug products, including the finalization of ICH ...
(Date:10/11/2017)... ... ... Personal eye wash is a basic first aid supply for any work environment, but most ... you rinse first if a dangerous substance enters both eyes? It’s one less decision, and ... unique dual eye piece. , “Whether its dirt and debris, or an acid or alkali, ...
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 ... London (ICR) and University of ... prognostic tool to risk-stratify patients with multiple myeloma (MM), in ... nine . The University of Leeds ... by Myeloma UK, and ICR will perform the testing services ...
(Date:10/10/2017)... CALIF. (PRWEB) , ... October 10, 2017 , ... San ... part of its corporate rebranding initiative announced today. The bold new look is ... reach, as the company moves into a significant growth period. , It will also ...
Breaking Biology Technology: