Navigation Links
Enzyme trio for biosynthesis of hydrocarbon fuels
Date:6/21/2010

If concerns for global climate change and ever-increasing costs weren't enough, the disastrous Gulf oil spill makes an even more compelling case for the development of transportation fuels that are renewable, can be produced in a sustainable fashion, and do not put the environment at risk. Liquid fuels derived from plant biomass have the potential to be used as direct replacements for gasoline, diesel and jet fuels if cost-effective means of commercial production can be found.

Researchers with the U.S. Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI) have identified a trio of bacterial enzymes that can catalyze key steps in the conversion of plant sugars into hydrocarbon compounds for the production of green transportation fuels.

Harry Beller, an environmental microbiologist who directs the Biofuels Pathways department for JBEI's Fuels Synthesis Division, led a study in which a three-gene cluster from the bacterium Micrococcus luteus was introduced into the bacterium Escherichia coli. The enzymes produced by this trio of genes enabled the E. coli to synthesize from glucose long-chain alkene hydrocarbons. These long-chain alkenes can then be reduced in size a process called "cracking" to obtain shorter hydrocarbons that are compatible with today's engines and favored for the production of advanced lignocellulosic biofuels.

"In order to engineer microorganisms to make biofuels efficiently, we need to know the applicable gene sequences and specific metabolic steps involved in the biosynthesis pathway," Beller says. "We have now identified three genes encoding enzymes that are essential for the bacterial synthesis of alkenes. With this information we were able to convert an E. coli strain that normally cannot make long-chain alkenes into an alkene producer."

Working with Beller on this study were Ee-Been Goh and Jay Keasling. The three were the co-authors of a paper that appeared earlier this year in the journal Applied and Environmental Microbiology, titled "Genes Involved in Long-Chain Alkene Biosynthesis in Micrococcus luteus."

It has long been known that certain types of bacteria are able to synthesize aliphatic hydrocarbons, which makes them promising sources of the enzymes needed to convert lignocellulose into advanced biofuels. However, until recently, little was known about the bacterial biosynthesis of non-isoprenoid hydrocarbons beyond a hypothesis that fatty acids are precursors. JBEI researchers in the Fuels Synthesis Division, which is headed by co-author Keasling, are using the tools of synthetic biology, and mathematical models of metabolism and gene regulation to engineer new microbes that can quickly and efficiently produce advanced biofuel molecules. E.coli is one of the model organisms being used in this effort because it is a well-studied microbe that is exceptionally amenable to genetic manipulation.

"We chose to work with M. luteus because a close bacterial relative was well-documented to synthesize alkenes and because a draft genome sequence of M. luteus was available," Beller says. "The first thing we did was to confirm that M. luteus also produces alkenes."

Beller and his colleagues worked from a hypothesis that known enzymes capable of catalyzing both decarboxylation and condensation should be good models for the kind of enzymes that might catalyze alkene synthesis from fatty acids. Using condensing enzymes as models, the scientists identified several candidate genes in M. luteus, including Mlut_13230. When expressed in E. coli together with the two adjacent genes - Mlut_13240 and 13250 - this trio of enzymes catalyzed the synthesis of alkenes from glucose. Observations were made both in vivo and in vitro.

"This group of enzymes can be used to make aliphatic hydrocarbons in an appropriate microbial host but the resulting alkenes are too long to be used directly as liquid fuels," Beller says. "However, these long-chain alkenes can be cracked a technique routinely used in oil refineries to create hydrocarbons of an appropriate length for diesel fuel."

The next step Beller says is to learn more about how these three enzymes work, particularly Mlut_13230 (also called OleA), which catalyzes the key step in the alkene biosynthesis pathway the condensation of fatty acids.

"We're also studying other pathways that can produce aliphatic hydrocarbons of an appropriate length for diesel fuels without the need for cracking," Beller says. "Nature has devised a number of biocatalysts to produce hydrocarbons, and our goal is to learn more about them for the production of green transportation fuels."


'/>"/>

Contact: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology news :

1. New technique reliably detects enzyme implicated in cancer and atherosclerosis
2. Protein regulates enzyme linked to Alzheimers disease
3. NIH funds multicenter glue grant to study enzyme function
4. Synthetic enzymes could help ID proteins
5. Pitt-led international study identifies human enzyme that breaks down potentially toxic nanomaterials, opens door to novel drug delivery
6. Pitt-led study identifies human enzyme that breaks down potentially toxic nanomaterials
7. Ayman El-Hattab, MD is awarded the 2010 Genzyme/ACMG Foundation Genetics Fellowship
8. Dangerous plaques in blood vessels rupture by overproducing protein-busting enzymes
9. Key enzyme discovered to be master regulator in protein-protein reactions
10. MSU scientists unlock key enzyme using newly created cool method
11. Enzyme deficiency protects hepatitis C patients from treatment-related anemia
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Enzyme trio for biosynthesis of hydrocarbon fuels
(Date:2/2/2016)... Feb. 2, 2016  Based on its recent ... Sullivan recognizes US-based Intelligent Retinal Imaging Systems (IRIS) ... Award for New Product Innovation. IRIS, a prominent ... North America , is poised to set ... diabetic retinopathy market. The IRIS technology presents superior ...
(Date:1/28/2016)... JOSE, Calif., Jan. 28, 2016 Synaptics (NASDAQ: SYNA ... results for its second quarter ended December 31, 2015. ... second quarter of fiscal 2016 increased 2 percent compared to the ... second quarter of fiscal 2016 was $35.0 million, or $0.93 per ... Non-GAAP net income for the first quarter of fiscal 2016 grew ...
(Date:1/22/2016)... 22, 2016 ... of the  "Global Behavioral Biometric Market ... --> http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has announced ... Biometric Market 2016-2020"  report to their ... Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has announced the ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... , Germany and ... QGEN ; Frankfurt Prime Standard: QIA) today ... Targeted RNA Panels for gene expression profiling, expanding QIAGEN,s ... (NGS). The panels enable researchers to select from over ... changes and discover interactions between genes, cellular phenotypes and ...
(Date:2/11/2016)... 11, 2016  Dovetail Genomics™ LLC today announced that ... for a planned metagenomic genome assembly service. Richard ... genome assembly method in a talk on Friday, February ... Technology conference in Orlando, Fla. ... datasets is difficult. Using its proprietary Chicago ...
(Date:2/11/2016)... (PRWEB) , ... February 11, 2016 , ... ... of its new stem cell treatment clinic in Quito, Ecuador. The new facility ... and trauma applications to patients from around the world. , The new ...
(Date:2/10/2016)... , Feb.10, 2016 ASAE is introducing ... Association Management Companies (AMC) the option of joining or ... annual fee determined by staff size, every employee in ... join ASAE and reap all available member benefits.   ... "Our new organizational membership options will allow organizations of ...
Breaking Biology Technology: