Navigation Links
Enzyme controls transport of genomic building blocks
Date:3/6/2014

Our DNA and its architecture are duplicated every time our cells divide. Histone proteins are key building blocks of this architecture and contain crucial information that regulates our genes. Danish researchers show how an enzyme controls reliable and high-speed delivery of histones to DNA copying hubs in our cells. This shuttling mechanism is crucial to maintain normal function of our genes and prevent disease. The results are published in the journal Nature Communications.

Interdisciplinary research team finds cellular high-speed shuttle

An interdisciplinary team of researchers from BRIC, University of Copenhagen and University of Southern Denmark have identified a cellular transport mechanism so fast and finely tuned that it compares to an Asian fast-speed train.

"Using advanced laboratory techniques, we have revealed how an enzyme called TLK1 regulates the transport of histones to DNA copying hubs in our cells. Such a devoted supply of histones, is crucial to maintain the genomic architecture when our cells divide", says Ilnaz Klimovskaia who has been spearheading the experimental work as part of her PhD-studies at BRIC.

The new results show that TLK1 controls the activity of a molecule called Asf1. Asf1 act as a freight train that transports histones to the nuclei of our cells where the DNA is copied during cell divisions. The enzymatic activity of TLK1 turn Asf1 into a fast-speed train, capable of precise, fast and timely transport of histones to newly formed DNA.

TLK1 contribute to cellular identity

Histones play an important role for the activity of our genes, as they contain information that can turn on or off genes. The information is communicated only when DNA is wrapped around the histones, to form the ordered genomic architecture called chromatin. As all our cells contain exactly the same genes, the histone information is crucial to activate only the sub-set of genes necessary to maintain a certain cellular identity. For example, heart genes needs only to be turned on in heart cells, but turned off in other cell types.

"We show that TLK can boost the supply of histones at critical time points. By controlling the transport of histones to our DNA, TLK and Asf1 ensure that the chromatin architecture and its information are copied correctly during cell division, so that cell identity is maintained", explains Ilnaz Klimovskaia.

Loss of chromatin integrity in cancer development

A tight coordination between DNA duplication and supply of major chromatin building blocks like histones, are crucial to maintain normal function of our cells. If the chromatin architecture is wrong, it can affect both gene expression as well as the stability of our DNA. Together, this is a dangerous cocktail that might fuel cellular changes and lead to cancer development.

"Our research adds a new layer to the understanding of how chromatin is maintained when cells in our body divides. This information is crucial to understand how cells maintain their identity and protect their genome, which is essential to avoid cancer development", says associate professor Anja Groth, who has been heading the research team.

The next step for the research team is to dig deeper into the understanding of how chromatin duplication is controlled. The team is also exploring whether targeting of the TLK enzyme could be useful in cancer therapy, as they speculate that reducing the supply of histones in highly dividing cancer cells, might make tumor cells more vulnerable to already existing cancer drugs.


'/>"/>

Contact: Katrine Sonne-Hansen
katrine.sonne@bric.ku.dk
45-21-32-90-40
University of Copenhagen
Source:Eurekalert  

Related biology news :

1. Penn biologists identify a key enzyme involved in protecting nerves from degeneration
2. New immune defense enzyme discovered
3. Genzyme/ACMG Foundation Genetics Training Award in Clinical Biochemical Genetics announced
4. ORNL process improves catalytic rate of enzymes by 3,000 percent
5. Scientists discover enzyme that could slow part of the aging process in astronauts -- and the elderly
6. New screening technique yields elusive compounds to block immune-regulating enzyme
7. UCLA scientists discover how key enzyme involved in aging, cancer assembles
8. Is it a rock, or is it Jell-O? Defining the architecture of rhomboid enzymes
9. Brain enzyme is double whammy for Alzheimers disease
10. Ancient enzymes function like nanopistons to unwind RNA
11. Remarkable enzyme points the way to reducing nitric acid use in industry
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Enzyme controls transport of genomic building blocks
(Date:5/16/2016)... --  EyeLock LLC , a market leader of iris-based ... IoT Center of Excellence in Austin, Texas ... embedded iris biometric applications. EyeLock,s iris authentication ... with unmatched biometric accuracy, making it the most proven ... platform uses video technology to deliver a fast and ...
(Date:4/28/2016)... , April 28, 2016 Infosys ... (NYSE: INFY ), and Samsung SDS, a global ... that will provide end customers with a more secure, fast ...      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... but it also plays a fundamental part in enabling and ...
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
Breaking Biology Technology: