Navigation Links
Environmental toxin Bisphenol A can affect newborn brain
Date:10/26/2011

Newborn mice that are exposed to Bisphenol A develop changes in their spontaneous behavior and evince poorer adaptation to new environments, as well hyperactivity as young adults. This has been shown by researchers at Uppsala University. Their study also revealed that one of the brain's most important signal systems, the cholinergic signal system, is affected by Bisphenol A and that the effect persisted into adulthood.

Our environment contains a number of pollutants, including Bisphenol A, which is used in plastics in a number of different applications. When plastic products are used, Bisphenol A can leak out, which is especially problematic as it is used in baby bottles, tin cans, plastic containers, plastic mugs, which are used by people of all ages. Both in Sweden and globally, Bisphenol A is widely used, and the substance has been found in human placentas, fetuses, and breast milk.

In recent years measurable amounts of Bisphenol have been found in dust from regular homes, but opinion differs regarding any negative effects of Bisphenol A, and risk assessments from various parts of the world present contradictory recommendations, even though the information used comes from the same research reports. Here in Sweden the Swedish Chemicals Agency and the Medical Products Agency are working on a ban for Bisphenol A in baby bottles and certain other plastic products.

In humans and mammals, the brain develops intensively during a limited period of time. In human babies, this brain development period runs from the seventh month of gestation through the first two years of life. The corresponding period for mice takes place during the 3-4 first weeks after birth. Uppsala researchers have shown in previous research studies that various toxic compounds can induce permanent damage to brain function when they are administered to newborn mice during this developmental period. Examples of such compounds are so-called brominated flame-retardants, polychlorinated biphenyls (PCBs), and DDT.

In an entirely new study these researchers examined whether exposure to Bisphenol A during the neonatal period can cause permanent damage to brain function. In the experiment different doses of Bisphenol A were given to mice when they were ten days old. The mice underwent a so-called spontaneous behavior test as young adults, in which they were made to change cages from their well-known home cage to another identical one during one hour. Normal mice are very active during the first 20 minutes, exploring the new home environment. This activity declines during the next 20 minutes, and in the final 20 minutes it drops even more, and the mice settle down and sleep.

"In our study we found that a single exposure to Bisphenol A during the short critical period of brain development in the neonatal period leads to changes in spontaneous behavior and poorer adaptation to new environments, as well as hyperactivity among young adult mice. When this is examined again later in their adult life, these functional disturbances persist, which indicates that the damage is permanent and do not in fact disappear," says Henrik Viberg at the Department of Organism Biology.

Using the same behavioral method, it was also examined whether the individuals that had received Bisphenol A during their neonatal period reacted differently than normal individuals to adult exposure to nicotine, which would indicate that one of the brain's most important signal systems, the cholinergic signal system, was affected. Normal animals exposed as adults to the given dose of nicotine experience dramatically increased activity compared with animals that were not exposed to nicotine. Animals that had been exposed to Bisphenol A during their neonatal period and then received nicotine as adults did not evince the same hyperactivity as normal animals at all. This indicates that the choligernic signal system had been affected and that these individuals had had developed increased sensitivity to this type of exposure in adulthood. Once again, this effect was induced during the neonatal period but persisted into adulthood.

"We have previously seen this type of effect from several other environmental toxins that are still prevalent in both indoor and outdoor environments. As these effects are similar to each other, it's possible that several different environmental toxins, including Bisphenol A, may work together in causing disturbances during brain development. This in turn may mean that the individual dosages of the various environmental toxins that are required to cause disturbances may be lower than those we examined in our studies of, for example, Bisphenol and brominated flame-retardants," says Henrik Viberg.


'/>"/>
Contact: Henrik Viberg
henrik.viberg@ebc.uu.se
46-070-171-9060
Uppsala University
Source:Eurekalert

Related biology news :

1. Polar bears ill from accumulated environmental toxins
2. Can indigenous peoples be relied on to gather reliable environmental data?
3. Seed time-capsule will aid study of plant evolution amid environmental change
4. Decline and recovery of coral reefs linked to 700 years of human and environmental activity
5. EPA grants help Wayne State researchers stave off Great Lakes environmental invaders
6. Genomewide mapping reveals developmental and environmental impacts
7. Scientists link shifting Atlantic mackerel distribution to environmental factors, changing climate
8. Plant biologists dissect genetic mechanism enabling plants to overcome environmental challenge
9. New study outlines economic and environmental benefits to reducing nitrogen pollution
10. New model predicts environmental effect of pharmaceutical products
11. Plan to one day end the use of environmentally harmful chemicals on commercial crops developed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... 2016   EyeLock LLC , a market leader ... of an IoT Center of Excellence in ... development of embedded iris biometric applications. EyeLock,s ... and security with unmatched biometric accuracy, making it the ... DNA. EyeLock,s platform uses video technology to deliver a ...
(Date:5/9/2016)... 9, 2016 Elevay is currently ... expanding freedom for high net worth professionals seeking travel ... globally connected world, there is still no substitute for ... duplicate sealing your deal with a firm handshake. This ... taking advantage of citizenship via investment programs like those ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 ... of Infosys (NYSE: INFY ), and Samsung SDS, ... partnership that will provide end customers with a more ... payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) ... financial services, but it also plays a fundamental part in ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)... June 27, 2016  Liquid Biotech ... funding of a Sponsored Research Agreement with The ... cells (CTCs) from cancer patients.  The funding will ... levels correlate with clinical outcomes in cancer patients ... will then be employed to support the design ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, ... second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical ... eBook by providing practical tips, tools, and strategies for clinical researchers. , “The ...
Breaking Biology Technology: