Navigation Links
Enhanced NIST instrument enables high-speed chemical imaging of tissues
Date:7/22/2014

A research team from the National Institute of Standards and Technology (NIST), working with the Cleveland Clinic, has demonstrated a dramatically improved technique for analyzing biological cells and tissues based on characteristic molecular vibration "signatures." The new NIST technique is an advanced form of the widely used spontaneous Raman spectroscopy, but one that delivers signals that are 10,000 times stronger than obtained from spontaneous Raman scattering, and 100 times stronger than obtained from comparable "coherent Raman" instruments, and uses a much larger portion of the vibrational spectrum of interest to cell biologists.*

The technique, a version of "broadband, coherent anti-Stokes Raman scattering" (BCARS), is fast and accurate enough to enable researchers to create high-resolution images of biological specimens, containing detailed spatial information on the specific biomolecules present at speeds fast enough to observe changes and movement in living cells, according to the NIST team.

Raman spectroscopy is based on a subtle interplay between light and molecules. Molecules have characteristic vibration frequencies associated with their atoms flexing and stretching the molecular bonds that hold them together. Under the right conditions, a photon interacting with the molecule will absorb some of this energy from a particular vibration and emerge with its frequency shifted by that frequencythis is "anti-Stokes scattering." Recording enough of these energy-enhanced photons reveals a characteristic spectrum unique to the molecule. This is great for biology because in principle it can identify and distinguish between many complex biomolecules without destroying them and, unlike many other techniques, does not alter the specimen with stains or fluorescent or radioactive tags.

Using this intrinsic spectral information to map specific kinds of biomolecules in an image is potentially very powerful, but the signal levels are very faint, so researchers have worked for years to develop enhanced methods for gathering these spectra.** "Coherent" Raman methods use specially tuned lasers to both excite the molecular vibrations and provide a bright source of probe photons to read the vibrations. This has partially solved the problem, but the coherent Raman methods developed to date have had limited ability to access most of the available spectroscopic information.

Most current coherent Raman methods obtain useful signal only in a spectral region containing approximately five peaks with information about carbon-hydrogen and oxygen-hydrogen bonds. The improved method described by the NIST team not only accesses this spectral region, but also obtains excellent signal from the "fingerprint" spectral region, which has approximately 50 peaksmost of the useful molecular ID information.

The NIST instrument is able to obtain enhanced signal largely by using excitation light efficiently. Conventional coherent Raman instruments must tune two separate laser frequencies to excite and read different Raman vibration modes in the sample. The NIST instrument uses ultrashort laser pulses to simultaneously excite all vibrational modes of interest. This "intrapulse" excitation is extremely efficient and produces its strongest signals in the fingerprint region. "Too much light will destroy cells," explains NIST chemist Marcus Cicerone, "So we've engineered a very efficient way of generating our signal with limited amounts of light. We've been more efficient, but also more efficient where it counts, in the fingerprint region."

Raman hyperspectral images are built up by obtaining spectra, one spatial pixel at a time. The hundred-fold improvement in signal strength for the NIST BCARS instrument makes it possible to collect individual spectral data much faster and at much higher quality than beforea few milliseconds per pixel for a high-quality spectrum versus tens of milliseconds for a marginal quality spectrum with other coherent Raman spectroscopies, or even seconds for a spectrum from more conventional spontaneous Raman instruments. Because it's capable of registering many more spectral peaks in the fingerprint region, each pixel carries a wealth of data about the biomolecules present. This translates to high-resolution imaging within a minute or so whereas, notes NIST electrical engineer Charles Camp, Jr., "It's not uncommon to take 36 hours to get a low-resolution image in spontaneous Raman spectroscopy."

"There are a number of firsts in this paper for Raman spectroscopy," Camp adds. "Among other things we show detailed images of collagen and elastinnot normally identified with coherent Raman techniquesand multiple peaks attributed to different bonds and states of nucleotides that show the presence of DNA or RNA."


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Enhanced royal jelly produces jumbo queen bee larvae
2. Potential drug molecule shows enhanced anti-HIV activity
3. Discovery may pave way to genetically enhanced biofuel crops
4. Musicians who learn a new melody demonstrate enhanced skill after a nights sleep
5. Xyngular Announces the Launch of its New Xyng Enhanced Formula
6. Better broccoli, enhanced anti-cancer benefits with longer shelf life
7. 660 nm red light-enhanced BMSCs transplantation for hypoxic-ischemic brain damage
8. WHOI scientists/engineers partner with companies to market revolutionary new instruments
9. UNH labs receive 2 NSF grants totalling $1.35m for research instruments
10. Exclusive agreement to distribute Affinity Biosensors Archimedes system extends Malvern Instruments biopharma solutions
11. BiOptix to highlight new 404pi instrument at European symposia
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Enhanced NIST instrument enables high-speed chemical imaging of tissues
(Date:8/15/2017)... ivWatch LLC , a medical device company focused on improving the ... its ISO 13485 Certification, the global standard for medical device quality ... ... device for the early detection of IV infiltrations. ... "This is an important milestone for ivWatch, as it validates ...
(Date:6/23/2017)... and ITHACA, N.Y. , ... and Cornell University, a leader in dairy research, today ... bioinformatics designed to help reduce the chances that the ... the onset of this dairy project, Cornell University has ... for Sequencing the Food Supply Chain, a food safety ...
(Date:5/16/2017)... -- Veratad Technologies, LLC ( www.veratad.com ), an innovative and ... solutions, announced today they will participate as a sponsor ... May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions of ... digital world, defining identity is critical to nearly every ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... research firm Parks Associates announced today that Tom Kerber ... Annual Meeting , October 11 in Scottsdale, Arizona . ... how smart safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase Driver ... "The residential security market has experienced continued growth, and the ...
(Date:10/9/2017)... 2017  BioTech Holdings announced today identification and ... ProCell stem cell therapy prevents limb loss in ... demonstrated that treatment with ProCell resulted in more ... compared to standard bone marrow stem cell administration.  ... reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... journal, Epilepsia, Brain Sentinel’s SPEAC® System which uses the surface electromyography (sEMG) ... tonic-clonic seizures (GTCS) using surface electromyography (sEMG). The prospective multicenter phase III ...
(Date:10/6/2017)... ... October 06, 2017 , ... ... healthcare and technology sector at their fourth annual Conference where founders, investors, innovative ... speakers and the ELEVATE pitch competition showcasing early stage digital health and med ...
Breaking Biology Technology: