Navigation Links
Engineers create intelligent molecules that seek-and-destroy diseased cells
Date:2/13/2009

Current treatments for diseases like cancer typically destroy nasty malignant cells, while also hammering the healthy ones. Using new advances in synthetic biology, researchers are designing molecules intelligent enough to recognize diseased cells, leaving the healthy cells alone.

"We basically design molecules that actually go into the cell and do an analysis of the cellular state before delivering the therapeutic punch," said Christina Smolke, assistant professor of bioengineering who joined Stanford University in January.

"When you look at a diseased cell (e.g. a cancer cell) and compare it to a normal cell, you can identify biomarkerschanges in the abundance of proteins or other biomolecule levelsin the diseased cell," Smolke said. Her research team has designed molecules that trigger cell death only in the presence of such markers. "A lot of the trick with developing effective therapeutics is the ability to target and localize the therapeutic effect, while minimizing nonspecific side effects," she said.

Smolke will present the latest applications of her lab's work at the American Association for the Advancement of Science (AAAS) meeting in Chicago on Friday, Feb. 13.

These designer molecules are created through RNA-based technologies that Smolke's lab developed at the California Institute of Technology. A recent example of these systems, developed with postdoctoral researcher Maung Nyan Win (who joined Smolke in her move to Stanford), was described in a paper published in the Oct. 17, 2008, issue of Science.

"We do our design on the computer and pick out sequences that are predicted to behave the way we like," Smolke said. When researchers generate these sequences inside the operating system of a cell, they reprogram the cell and change its function. "Building these molecules out of RNA gives us a very programmable and therefore powerful design substrate," she said.

Smolke's team focuses on well-researched model systems in breast, prostate and brain cancers, including immunotherapy applications based on reprogramming human immune response to different diseases. The researchers work directly with clinicians at the City of Hope Cancer Center (a National Cancer Institute designated Comprehensive Cancer Center in Duarte, Calif.) that have ongoing immunotherapy trials for treating glioma, a severe type of brain cancer.

"Our goal is to make more effective therapies by taking advantage of the natural capabilities of our immune system and introducing slight modifications in cases where it is not doing what we would like it to do," Smolke said. She hopes to translate her technologies into intelligent cellular therapeutics for glioma patients in the next five years. "That's a very optimistic view," she said. "But so far things have been moving quickly."

The broader implications for using intelligent molecules in immunotherapy and gene therapy seem limitless. Researchers and doctors can use this approach by targeting a specific cellular function or behavior they want to control in a particular disease. Then they can identify signals indicative of viral infection, host immune response, or drugs the clinician is administering and engineer the molecules to change the cell function in response to those signals.

"In a lot of therapies, you have nonspecific side effects or you're balancing the desired effect of the therapy on diseased cells or infection with its undesired effects on the entire host," Smolke said. Current chemotherapy treatments for cancer, and even many gene therapies, have drastic and debilitating consequences for patients. The designer molecules provide a whole new targeting accuracy that should mitigate these side effects.

"This is all very front-end work," Smolke said. "We've just started to move these foundational technologies into these sorts of downstream medical applications, and so there is a lot to learn which makes it that much more exciting."

Smolke's work is funded by the National Institutes of Health, National Science Foundation, Department of Defense and the Beckman Foundation.

At the AAAS meeting, Smolke will present her work alongside Drew Endy, assistant professor of bioengineering at Stanford University, as part of the Synthetic Life symposium.

Endy, who joined Stanford last fall, will discuss the societal and safety implications of molecular synthesis technology. This includes the consequences of researchers moving toward building registries for standard biological parts and the education aspects of iGEMan international forum where student teams compete to design and assemble engineered machines using advanced genetic components and technologieswhich has led to the training of a new generation of scientists and bioengineers. Stanford will be hosting its first iGEM team this year. Endy will also discuss his efforts, along with colleagues, to start fabrication facilities focused on churning out libraries of open-access biological parts and the resulting implications for biological engineering.


'/>"/>

Contact: Louis Bergeron
louisb3@stanford.edu
650-725-1944
Stanford University
Source:Eurekalert

Related biology news :

1. Biomedical engineers detective work reveals antibiotic mechanism
2. Caltech engineers build firast-ever multi-input plug-and-play synthetic RNA device
3. UC San Diego bioengineers fill holes in science of cellular self-organization
4. Engineers create bone that blends into tendons
5. Kalyon wins Society of Plastics Engineers 2008 Research Award
6. Caltech engineers build mini drug-producing biofactories in yeast
7. UC Riverside bioengineer receives high honor from chemical engineers
8. Engineers create 3-D model to help biologists combat blue tongue virus
9. Scientists find that squid beak is both hard and soft, a material that engineers want to copy
10. Chemical engineers discover new way to control particle motion
11. Policing cells demand ID to tell friend from foe, say University of Pennsylvania cell engineers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/21/2016)... -- Unique technology combines v ...   Xura, Inc. (NASDAQ: ... communications services, today announced it is working alongside SpeechPro ... particularly those in the Financial Services Sector, the ability ... a mobile app, alongside, and in combination with, traditional ...
(Date:3/15/2016)... -- Yissum Research Development Company of the Hebrew ... Hebrew University, announced today the formation of Neteera ... human biological indicators. Neteera Technologies has completed its first ... ... emissions from sweat ducts, enables reliable and speedy biometric ...
(Date:3/11/2016)... -- --> --> ... Market by Technology (Pattern Recognition), by Component (Hardware, Software, ... (On-Premises and Cloud), by Industry Vertical and by Region ... global market is expected to grow from USD 12.49 ... at a CAGR of 19.1%. , ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... ... May 25, 2016 , ... Scientists at the University of Athens ... for mesothelioma may be hampering the research that could lead to one good one. ... to read it now. , The team evaluated 98 mesothelioma patients ...
(Date:5/25/2016)... Connecticut (PRWEB) , ... May 25, 2016 , ... ... the U.S. Food and Drug Administration (FDA) has granted the company’s orphan drug ... the company’s second orphan drug designation granted by the FDA. , Spinocerebellar ...
(Date:5/24/2016)... La Jolla, CA (PRWEB) , ... May 24, 2016 , ... ... and financial planning for corporate executives and entrepreneurs, held The Future of San Diego ... leaders in the San Diego life science community attended the event with speakers Dr. ...
(Date:5/23/2016)... ... May 23, 2016 , ... PrecisionAg® Media has ... 2017 and Beyond. The paper outlines the key trends that are creating both ... “We’ve witnessed a lot of highs and lows as the precision agriculture market ...
Breaking Biology Technology: