Navigation Links
Engineering a better hip implant
Date:9/18/2012

University of Iowa researchers have determined that thigh size in obese people is a reason their hip implants are more likely to fail.

In a study, the team simulated hip dislocations as they occur in humans and determined that increased thigh girth creates hip instability in morbidly obese patients (those with a body mass index (BMI) greater than 40). The researchers propose that surgeons modify surgical procedures to minimize the chance of dislocation in obese patients and consider other designs for hip replacement implants.

"We have shown that morbidly obese patients' thighs are so large that they are actually pushing each other outward and forcing the implant out of its socket," says Jacob Elkins, a UI graduate student and first author of the paper published in the journal Clinical Orthopaedics and Related Research. "Studies have shown up to a 6.9-fold higher dislocation rate for morbidly obese patients compared to normal weight patients.

Total hip replacement gives mobility back to people who experience debilitating hip joint pain. According to the National Institute of Arthritis and Musculoskeletal and Skin Disease (NIAMS), 231,000 total hip replacements are performed annually in the U.S. and more than 90 percent of these do not require follow-up repair or replacement. But when an implant fails, it is painful, and costly. Studies have shown that dislocation ranks as the most common reason for failed implants, according to Medicare hospital discharge data.

A hip implant is a ball-in-socket mechanism, designed to simulate a human hip joint. However, it lacks the connective tissue that stabilizes a normal hip joint, meaning the ball portion of the implant can sometimes "pop out."

Clinical studies point to an increased dislocation risk among obese patients with total hip replacements, but the reasons have remained unclear. Dislocation requires extreme range of motion, such as flexing at the waist. Given the reduced range of motion in the obese, why do they experience more dislocations?

Using a computational model he created to understand how a hip implant works in patients, Elkins and research collaborators analyzed 146 healthy adults and six cadaver pelvises. They examined the effects of thigh-on-thigh pressure on the hip implant during a wide range of movements from sitting to standing. With the ability to simulate movements in human bodies of varying sizes, the team could test different implants. They also looked at the various implants' performances in different body types. They used a hip-center-to-hip-center distance of 200 millimeters as a basis for their analyses of thigh girth for eight different BMIs, ranging from 20 to 55.

The research team ran computations to examine the joint stability of several different hip implants. They tested two femoral head sizes (28 and 36 millimeters), normal versus high-offset femoral neck, and multiple cup abduction angles.

The researchers report three main findings: 1) thigh soft tissue impingement increased the risk of dislocation for BMIs of 40 or greater; 2) implants with a larger femoral head diameter did not substantially improve joint stability; 3) using an implant with a high-offset femoral stem decreased the dislocation risk.

"The larger your legs are, the more force that goes through the hip joint," Elkins says. "It's a simple concept. When your thighs are real big, they push on the hips."

Surgeons treating obese hip implant patients can use the study findings to select better implant designs and modify their surgical procedures to minimize the chance of dislocation in obese patients, the researchers say.

"The number one thing surgeons can do is what is called a 'high offset femoral stem,'" says senior author Thomas Brown, UI professor of orthopaedic surgery, referring to the portion of the implant that attaches to the patient's upper thigh bone, or femur. "Basically, the implant's femoral stem is longer, so it effectively shifts the leg further away from the center rotation of the joint. The thighs then would need to move even further inward before they would abut one another and generate the forces necessary for dislocation."


'/>"/>

Contact: Richard Lewis
richard-c-lewis@uiowa.edu
319-384-0012
University of Iowa
Source:Eurekalert

Related biology news :

1. UA engineering professor Shane Snyder to speak in Korea on international water quality
2. Engineering research centers awarded $55.5 million to innovate in nanoscale science and engineering
3. £30 million boost for biomedical engineering research
4. University of Minnesota engineering researchers discover new non-invasive method for diagnosing epilepsy
5. UA engineering professor uses aerospace materials to build endless pipeline
6. Genetic Engineering & Biotechnology News unveils Biotech Boulevard
7. Engineering technology reveals eating habits of giant dinosaurs
8. GEN reports on growth of tissue engineering revenues
9. Oligonucleotide Delivery: Biology, Engineering and Development Conference
10. Investigation of American Oriental Bioengineering, Inc. by Securities Lawyers at Goldfarb LLP Law Firm for Potential Shareholder Claim
11. NSF report detailing growth in graduate enrollment in science & engineering in the past decade
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
(Date:3/23/2017)... Mar. 23, 2017 Research and Markets has ... Analysis & Trends - Industry Forecast to 2025" report to ... ... a CAGR of around 8.8% over the next decade to reach ... analyzes the market estimates and forecasts for all the given segments ...
Breaking Biology News(10 mins):
(Date:5/22/2017)... PA (PRWEB) , ... May 22, 2017 , ... ... announced today that it is exhibiting in booth B2 at the Association for ... Pittsburgh, May 22-25. , In addition to demonstrating its Cancer Diagnostic Cockpit ...
(Date:5/19/2017)... ... May 19, 2017 , ... ... Program. Academic researchers with technologies ripe for commercialization, and who are affiliated ... Delaware, are encouraged to submit proposals. QED, now in its tenth round, is ...
(Date:5/18/2017)... ROCHELLE, VIRGINIA (PRWEB) , ... May 17, 2017 , ... ... senior business executive and former CEO of Eurofins Advantar Laboratories and President of Pharmaceutical ... In addition to his position at Eurofins and Cardinal Health, he was former Chief ...
(Date:5/18/2017)... ... May 17, 2017 , ... HOLLOWAY AMERICA, a ... food and dairy, munitions, and pharmaceutical/biotech, recently introduced The Revolution Lift™, a new ... The improvement in technology comes on the heels of HOLLOWAY’s release of the ...
Breaking Biology Technology: