Navigation Links
Engineered stem cell advance points toward treatment for ALS
Date:5/28/2013

MADISON, Wis. Transplantation of human stem cells in an experiment conducted at the University of Wisconsin-Madison improved survival and muscle function in rats used to model ALS, a nerve disease that destroys nerve control of muscles, causing death by respiratory failure.

ALS (amyotrophic lateral sclerosis) is sometimes called "Lou Gehrig's disease." According to the ALS Association, the condition strikes about 5,600 Americans each year. Only about half of patients are alive three years after diagnosis.

In work recently completed at the UW School of Veterinary Medicine, Masatoshi Suzuki, an assistant professor of comparative biosciences, and his colleagues used adult stem cells from human bone marrow and genetically engineered the cells to produce compounds called growth factors that can support damaged nerve cells.

The researchers then implanted the cells directly into the muscles of rats that were genetically modified to have symptoms and nerve damage resembling ALS.

In people, the motor neurons that trigger contraction of leg muscles are up to three feet long. These nerve cells are often the first to suffer damage in ALS, but it's unclear where the deterioration begins. Many scientists have focused on the closer end of the neuron, at the spinal cord, but Suzuki observes that the distant end, where the nerve touches and activates the muscle, is often damaged early in the disease.

The connection between the neuron and the muscle, called the neuro-muscular junction, is where Suzuki focuses his attention. "This is one of our primary differences," Suzuki says. "We know that the neuro-muscular junction is a site of early deterioration, and we suspected that it might be the villain in causing the nerve cell to die. It might not be an innocent victim of damage that starts elsewhere."

Previously, Suzuki found that injecting glial cell line-derived neurotropic factor (GDNF) at the junction helped the neurons survive. The new study, published in the journal Molecular Therapy on May 28, expands the research to show a similar effect from a second compound, called vascular endothelial growth factor.

In the study, Suzuki found that using stem cells to deliver vascular endothelial growth factor alone improved survival and delayed the onset of disease and the decline in muscle function. That result mirrored his earlier study with GDNF.

But the real advance, Suzuki says, was finding an even better result from using stem cells that create both of these two growth factors. "In terms of disease-free time, overall survival, and sustaining muscle function, we found that delivering the combination was more powerful than either growth factor alone. The results would provide a new hope for people with this terrible disease."

The new research was supported by the ALS Association, the National Institutes of Health, the University of Wisconsin Foundation, and other groups.

The injected stem cells survived for at least nine weeks, but did not become neurons. Instead, their contribution was to secrete one or both growth factors.

Originally, much of the enthusiasm for stem cells focused on the hope of replacing damaged cells, but Suzuki's approach is different. "These motor nerve cells have extremely long connections, and replacing these cells is still challenging. But we aim to keep the neurons alive and healthy using the same growth factors that the body creates, and that's what we have shown here."

For the test, Suzuki used ALS model rats with a mutation that is found in a small percentage of ALS patients who have a genetic form of the disease. "This model has been accepted as the best test bed for ALS experiments," says Suzuki.

By using adult mesenchymal stem cells, the technique avoided the danger of tumor that can arise with the transplant of embryonic stem cells and related "do-anything" cells. Importantly, mesenchymal stem cells have been already used in clinical trials for various human diseases.

In the future, Suzuki hopes to apply his approach by using clinical grade stem cells. "Because this is a fatal and untreatable disease, we hope this could enter a clinical trial relatively soon."


'/>"/>

Contact: Masatoshi Suzuki
msuzuki@vetmed.wisc.edu
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Engineered microbes grow in the dark
2. Europe needs genetically engineered crops, scientists say
3. Recruiting engineered cells to work for warfighters
4. Market Analysis: Biomaterials and Engineered Protein
5. Painting with catalysts: Nano-engineered materials for detoxifying water by use of sunlight
6. Engineered bacteria make fuel from sunlight
7. Production of 5-aminovaleric and glutaric acid by metabolically engineered microorganism
8. Engineered immune cells produce complete response in child with an aggressive pediatric leukemia
9. Leukemia patients remain in remission more than 2 years after engineered T cell therapy
10. Bioengineered marine algae expands environments where biofuels can be produced
11. Soft Robotics: A groundbreaking new journal on engineered soft devices that Interact with Living Systems
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/20/2016)... -- Securus Technologies, a leading provider of civil ... investigation, corrections and monitoring announced that after exhaustive ... the final acceptance by all three (3) Department ... (MAS) installed. Furthermore, Securus will have contracts for ... October, 2016. MAS distinguishes between legitimate wireless device ...
(Date:6/9/2016)...  Perkotek an innovation leader in attendance control systems is proud to announce the ... employers to make sure the right employees are actually signing in, and to even ... ... ... ...
(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... - BIOREM Inc. (TSX-V: BRM) ("Biorem" or "the Company") announces ... Clean Technology Fund I, LP and Clean Technology Fund ... venture capital funds which together hold approximately 59% of ... as converted basis), that they have entered into an ... in Biorem to TUS Holdings Co. Ltd. ("TUS") (en.tusholdings.com) ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... 2016 Epic Sciences unveiled a liquid ... to PARP inhibitors by targeting homologous recombination deficiency ... new test has already been incorporated into numerous ... types. Over 230 clinical trials are ... including PARP, ATM, ATR, DNA-PK and WEE-1. Drugs ...
Breaking Biology Technology: