Navigation Links
Engineered coral pigment helps scientists to observe protein movement

Scientists in Southampton, UK, and Ulm and Karlsruhe in Germany have shown that a variant form of a fluorescent protein (FP) originally isolated from a reef coral has excellent properties as a marker protein for super-resolution microscopy in live cells. Their findings have been published online by Nature Methods and will appear in print in the upcoming August issue of that journal.

Fluorescent proteins produced by a range of marine animals glow with a rainbow of colours, adding to the visual spectacle of coral reefs. Over recent years, molecular biologists have isolated a number of FPs and their genes, and used them to create genetically engineered variant FPs with particular light-emission characteristics.

"Fluorescent pigments from corals and related animals have proved to be invaluable lead structures to produce advanced markers for biomedical research," said Dr Jrg Wiedenmann of the University of Southampton's School of Ocean and Earth Science (SOES) based at the National Oceanography Centre, Southampton: "They enable a plethora of exciting experiments, including non-invasive study of dynamical processes within live cells,"

Photoactivatable FPs (PA-FPs)can, as their name suggests, be switched on by light. When light of a particular wavelength is shone upon them they start to glow, emitting light of characteristic hue.

Wiedenmann and his collaborators previously described EosFP, a PA-FP from the reef-building coral Lobophyllia. Genetic engineering yielded the variant IrisFP with dual photoactivation capacity. In one mode it is irreversibly 'photo-converted' from a green- to a red-emitting form under violet light. In a second mode, these two light-emitting forms can be switched on and off more or less at will using light of different wavelengths ('photo-switching').

For use in cell biology experiments, PA-FPs are genetically fused to proteins of interest, and expressed in live cells. Small regions of the cell are then illuminated with laser light of specific wavelength, causing the marker proteins to emit light at another wavelength. This allows dynamical cell processes to be visualised and studied under the microscope.

In the native state, four molecules of IrisFP join together to form a tetramer, creating problems for fusion-protein applications. To get round this, the researchers have now modified the protein by introducing four mutations. This makes individual IrisFP molecules (monomers) more stable, reducing their tendency for form tetramers.

"The monomeric variant, mIrisFP, maintains dual photoactivation capacity and has excellent properties as a genetically encoded fluorescent marker protein," explained Wiedenmann.

To test the usefulness of mIrisFP, the researchers genetically fused it with a number of other proteins within cultured cells. These included transcription factors, which regulate the expression of genes within the cell nucleus, and constituent proteins of the cell skeleton ('cytoskeleton'). In all cases, the fusion proteins functioned normally.

Further experiments demonstrated that mIrisFP fusion proteins could, as hoped, be used to study dynamical processes within live cells with a spatial resolution beyond the limits of conventional light microscopy. Specifically, the researchers successfully combined so-called pulse-chase experiments with photoactivation localisation microscopy (PALM) imaging to follow the movement of fluorescently marked fusion proteins over time and at very high spatial resolution.

"The dual photoactivation capability and the monomeric nature of mIrisFP should allow cell biologists to perform a wider range of experiments than possible using only conventional PA-FPs," said Wiedenmann.

"Marine animals such as corals and anemones are not only beautiful and important for ecosystem functioning, but also as source of fluorescent proteins of enormous value to biomedical research," he added.


Contact: Dr. Rory Howlett
National Oceanography Centre, Southampton (UK)

Related biology news :

1. Native-like spider silk produced in metabolically engineered bacterium
2. Genetically engineered crops benefit many farmers, but the technology needs proper management to remain effective
3. Genetically engineered tobacco plant cleans up environmental toxin
4. Engineered tobacco plants have more potential as a biofuel
5. Bioengineered materials promote the growth of functional vasculature, new study shows
6. First genetically-engineered malaria vaccine to enter human trials
7. Genetically engineered mice yield clues to knocking out cancer
8. Engineered pig stem cells bridge the mouse-human gap
9. Scientists test Moreton Bay as coral lifeboat
10. Scientific coral reef survey to be conducted in Bonaire
11. Study shows cleaner water mitigates climate change effects on Florida Keys coral reefs
Post Your Comments:
Related Image:
Engineered coral pigment helps scientists to observe protein movement
(Date:11/16/2015)... , Nov 16, 2015  Synaptics Inc. (NASDAQ: ... interface solutions, today announced expansion of its TDDI ... touch controller and display driver integration (TDDI) ... smartphones. These new TDDI products add to the ... resolution), TD4302 (WQHD resolution), and TD4322 (FHD resolution) ...
(Date:11/12/2015)... Mass. , Nov. 12, 2015  Arxspan ... Institute of MIT and Harvard for use of ... discovery information management tools. The partnership will support ... both biological and chemical research information internally and ... will be used for managing the Institute,s electronic ...
(Date:11/11/2015)... 2015   MedNet Solutions , an innovative SaaS-based eClinical ... is pleased to announce that it will be a Sponsor ... event, to be held November 17-19 in Hamburg ... demonstrations of iMedNet , MedNet,s easy-to-use, proven ... has been able to deliver time and cost savings ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... DIEGO , December 1, 2015 Dr. Harry Lander ... serving as Chief Science Officer and recruits ... Dr. Harry Lander , President of Regen, expands his role to ... and recruits five distinguished scientists to join ... Regen, expands his role to include serving ...
(Date:12/1/2015)... ... ... Matthew “Tex” VerMilyea, PhD, HCLD, has joined Texas Fertility Center as its ... procedures as well as continue his research efforts into the emerging technologies of embryo ... Zealand to bring home a High Complexity Clinical Laboratory Director named Tex,” says ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... physicians, aesthetic practitioners and aesthetics professionals from Central America and abroad for the ... in Panama City, Panama Feb. 17-19, 2016. Testart will present and discuss new ...
(Date:11/30/2015)... ... 2015 , ... Global Stem Cells Group today ... Santiago Marriott. The Global Stem Cells Group GMP facility is equipped with the ... medical researchers and practitioners, experienced in administering stem cell protocols using highly manipulated ...
Breaking Biology Technology: