Navigation Links
Energy-saving powder

This release is available in German.

It is currently estimated that natural gas resources will be exhausted in 130 years; however, those reserves where extraction is cost-effective will only flow for another 60 years or so. Scientists at the Max Planck Institute for Coal Research and at the Max Planck Institute of Colloids and Interfaces might be helping to make it worthwhile to tap into previously unused resources. They have developed a catalyst that converts methane to methanol in a simple and efficient process. Methanol can be transported from locations where it is not economical to build a pipeline. (Angewandte Chemie Int. Ed., September 1, 2009)

It is not cost-effective to lay pipelines to remote or small natural gas fields; nor is it worthwhile accessing the methane in coal seams or in gas sand, or which is burned off as a by-product of oil production, although the methane burned off throughout the world could more than satisfy Germany's requirement for natural gas. It is also too expensive to liquefy the gas and transport it on trains or in tankers - and even chemistry has so far been unable to offer a solution. Although there are chemical ways to convert methane to methanol, which is easy to transport and which is suitable as a raw material for the chemical industry, "the processes commonly used up to now for producing diesel fuel - steam reforming followed by methanol synthesis or Fischer-Tropsch synthesis - are not economical," says Ferdi Schth, Director at the Max Planck Institute for Coal Research in Mlheim an der Ruhr. He and his colleagues have been working with Markus Antonietti and his team at the Max Planck Institute of Colloids and Interfaces in Potsdam to develop a catalyst that might change all this.

The catalyst consists of a nitrogenous material, a covalent, triazine-based network (CTF) synthesized by the chemists in Potsdam. "This solid is so porous that the surface of a gram is approximately equivalent in size to a fifth of a football field," says Markus Antonietti. The researchers in Mlheim insert platinum atoms into the voluminous lattice of the CTF. Thanks to the large surface area, the catalyst oxidizes the methane efficiently to methanol, as it offers the methane a large area in which to react when the chemists immerse it in oxidizing sulphuric acid, force methane into the acid and heat the mixture to 215 Celsius under pressure. Methanol is created from more than three-quarters of the converted gas.

A catalyst manufactured by the American chemist Roy Periana more than ten years ago from platinum and simple nitrogenous bipyrimidine also effectively creates methanol, but only supports the reaction in a soluble form. This means that the catalyst - which chemists refer to as a homogenous catalyst - subsequently needs to be separated off in a laborious and somewhat wasteful process. "It's much easier with our heterogeneous catalyst," says Ferdi Schth. The chemists in Mlheim filter out the powdery platinum and CTF catalyst, and then separate the acid and methanol in a simple distillation.

The catalyst developed by the Max Planck chemists probably uses the same mechanism as the Periana catalyst and was indeed inspired by it. "When I saw the structure of CTF, I noticed the elements which correspond to its bipyrimidine ligands," says Schth. "That's when I had the idea of manufacturing the solid catalyst."

To get closer to a large-scale technical application, he and his colleagues are now attempting to enable the process to work with reactants in gaseous rather than soluble form. "We are also looking for similar, even more effective catalysts," says Schth. "We have already found more efficient homogenous catalysts with ligands other than bipyrmidine." They are now using these as a model for simple, easy to manage catalysts like the CTF and platinum powder.


Contact: Professor Ferdi Schueth

Related biology news :

1. Energy-saving method checks refrigerant level in air conditioners
2. Energy-saving bacteria resist antibiotics
3. State fund advances titanium powder research, 9 other Iowa State projects
Post Your Comments:
(Date:6/9/2016)... , June 9, 2016 ... deploy Teleste,s video security solution to ensure the safety of ... during the major tournament Teleste, an ... systems and services, announced today that its video security solution ... to back up public safety across the country. The ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
(Date:6/2/2016)... 2016   The Weather Company , an IBM Business ... industry-first capability in which consumers will be able to interact ... questions via voice or text and receive relevant information about ... Marketers have long sought an advertising solution that can ... personal, relevant and valuable; and can scale across millions of ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: ... been advised by its major shareholders, Clean Technology Fund ... United States based venture capital funds ... of Biorem (on a fully diluted, as converted basis), ... disposition of their entire equity holdings in Biorem to ...
(Date:6/27/2016)... ... June 27, 2016 , ... Cancer ... what they believe could be a new and helpful biomarker for malignant pleural ... Click here to read it now. , Biomarkers are components in the ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
Breaking Biology Technology: