Navigation Links
Energy-harvesting rubber sheets could power pacemakers, mobile phones
Date:1/27/2010

Power-generating rubber films developed by Princeton University engineers could harness natural body movements such as breathing and walking to power pacemakers, mobile phones and other electronic devices.

The material, composed of ceramic nanoribbons embedded onto silicone rubber sheets, generates electricity when flexed and is highly efficient at converting mechanical energy to electrical energy. Shoes made of the material may one day harvest the pounding of walking and running to power mobile electrical devices. Placed against the lungs, sheets of the material could use breathing motions to power pacemakers, obviating the current need for surgical replacement of the batteries which power the devices.

A paper on the new material, titled "Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion," was published online Jan. 26, in Nano Letters, a journal of the American Chemical Society. The research was funded by the United States Intelligence Community, a cooperative of federal intelligence and national security agencies.

The Princeton team is the first to successfully combine silicone and nanoribbons of lead zirconate titanate (PZT), a ceramic material that is piezoelectric, meaning it generates an electrical voltage when pressure is applied to it. Of all piezoelectric materials, PZT is the most efficient, able to convert 80% of the mechanical energy applied to it into electrical energy.

"PZT is 100 times more efficient than quartz, another piezoelectric material," said Michael McAlpine, a professor of mechanical and aerospace engineering, at Princeton, who led the project. "You don't generate that much power from walking or breathing, so you want to harness it as efficiently as possible."

The researchers first fabricated PZT nanoribbons strips so narrow that 100 fit side-by-side in a space of a millimeter. In a separate process, they embedded these ribbons into clear sheets of silicone rubber, creating what they call "piezo-rubber chips." Because the silicone is biocompatible, it is already used for cosmetic implants and medical devices. "The new electricity-harvesting devices could be implanted in the body to perpetually power medical devices, and the body wouldn't reject them," McAlpine said.

In addition to generating electricity when it is flexed, the opposite is true: the material flexes when electrical current is applied to it. This opens the door to other kinds of applications, such as use for microsurgical devices, McAlpine said.

"The beauty of this is that it's scalable," said Yi Qi, a postdoctoral researcher who works with McAlpine. "As we get better at making these chips, we'll be able to make larger and larger sheets of them that will harvest more energy."


'/>"/>

Contact: Chris Emery
cemery@princeton.edu
609-258-4597
Princeton University, Engineering School
Source:Eurekalert  

Related biology news :

1. Carbon dioxide scrubber captures greenhouse gases
2. Newly created cancer stem cells could aid breast cancer research
3. Obesity and lack of exercise could enhance the risk of pancreatic cancer
4. Finding that 1-in-a-billion that could lead to disease
5. 60 second test could help early diagnosis of common brain diseases
6. Auto immune response creates barrier to fertility; could be a step in speciation
7. Paracetamol, one of most used analgesics, could slow down bone growth
8. Drug could improve pregnancy outcomes in wider range of women with insulin resistance
9. Thousands of starving children could be restored to health with peanut butter program
10. Nanotech could make solar energy as easy and cheap as growing grass
11. CO2 emissions could violate EPA ocean-quality standards within decades
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Energy-harvesting rubber sheets could power pacemakers, mobile phones
(Date:3/28/2017)... 2017 The report "Video Surveillance ... Servers, Storage Devices), Software (Video Analytics, VMS), and Service ... Forecast to 2022", published by MarketsandMarkets, the market was ... projected to reach USD 75.64 Billion by 2022, at ... base year considered for the study is 2016 and ...
(Date:3/24/2017)... , March 24, 2017 The Controller General of ... Mr. Abdulla Algeen have received the prestigious international IAIR Award ... Continue Reading ... ... and Deputy Controller Abdulla Algeen (small picture on the right) have received ...
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... The ... three Winners and six Finalists of the 2017 Blavatnik Regional Awards for Young ... Family Foundation and administered by the New York Academy of Sciences to honor ...
(Date:10/12/2017)... ... , ... AMRI, a global contract research, development and manufacturing ... and quality of life, will now be offering its impurity solutions as a ... requirements for all new drug products, including the finalization of ICH M7 earlier ...
(Date:10/11/2017)... ... ... Personal eye wash is a basic first aid supply for any work environment, but most ... you rinse first if a dangerous substance enters both eyes? It’s one less decision, and ... unique dual eye piece. , “Whether its dirt and debris, or an acid or alkali, ...
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. ... Cancer Research, London (ICR) and University ... SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma ... MUK nine . The University of Leeds ... partly funded by Myeloma UK, and ICR will perform the ...
Breaking Biology Technology: