Navigation Links
Electrical circuit runs entirely off power in trees
Date:9/8/2009

You've heard about flower power. What about tree power? It turns out that it's there, in small but measurable quantities. There's enough power in trees for University of Washington researchers to run an electronic circuit, according to results to be published in an upcoming issue of the Institute of Electrical and Electronics Engineers' Transactions on Nanotechnology.

"As far as we know this is the first peer-reviewed paper of someone powering something entirely by sticking electrodes into a tree," said co-author Babak Parviz, a UW associate professor of electrical engineering.

A study last year from the Massachusetts Institute of Technology found that plants generate a voltage of up to 200 millivolts when one electrode is placed in a plant and the other in the surrounding soil. Those researchers have since started a company developing forest sensors that exploit this new power source.

The UW team sought to further academic research in the field of tree power by building circuits to run off that energy. They successfully ran a circuit solely off tree power for the first time.

Co-author Carlton Himes, a UW undergraduate student, spent last summer exploring likely sites. Hooking nails to trees and connecting a voltmeter, he found that bigleaf maples, common on the UW campus, generate a steady voltage of up to a few hundred millivolts.

The UW team next built a device that could run on the available power. Co-author Brian Otis, a UW assistant professor of electrical engineering, led the development of a boost converter, a device that takes a low incoming voltage and stores it to produce a greater output. His team's custom boost converter works for input voltages of as little as 20 millivolts (a millivolt is one-thousandth of a volt), an input voltage lower than any existing such device. It produces an output voltage of 1.1 volts, enough to run low-power sensors.

The UW circuit is built from parts measuring 130 nanometers and it consumes on average just 10 nanowatts of power during operation (a nanowatt is one billionth of a watt).

"Normal electronics are not going to run on the types of voltages and currents that we get out of a tree. But the nanoscale is not just in size, but also in the energy and power consumption," Parviz said.

"As new generations of technology come online," he added, "I think it's warranted to look back at what's doable or what's not doable in terms of a power source."

Despite using special low-power devices, the boost converter and other electronics would spend most of their time in sleep mode in order to conserve energy, creating a complication.

"If everything goes to sleep, the system will never wake up," Otis said.

To solve this problem Otis' team built a clock that runs continuously on 1 nanowatt, about a thousandth the power required to run a wristwatch, and when turned on operates at 350 millivolts, about a quarter the voltage in an AA battery. The low-power clock produces an electrical pulse once every few seconds, allowing a periodic wakeup of the system.

The tree-power phenomenon is different from the popular potato or lemon experiment, in which two different metals react with the food to create an electric potential difference that causes a current to flow.

"We specifically didn't want to confuse this effect with the potato effect, so we used the same metal for both electrodes," Parviz said.

Tree power is unlikely to replace solar power for most applications, Parviz admits. But the system could provide a low-cost option for powering tree sensors that might be used to detect environmental conditions or forest fires. The electronic output could also be used to gauge a tree's health.

"It's not exactly established where these voltages come from. But there seems to be some signaling in trees, similar to what happens in the human body but with slower speed," Parviz said. "I'm interested in applying our results as a way of investigating what the tree is doing. When you go to the doctor, the first thing that they measure is your pulse. We don't really have something similar for trees."


'/>"/>

Contact: Hannah Hickey
hickeyh@uw.edu
206-543-2580
University of Washington
Source:Eurekalert  

Related biology news :

1. Coating improves electrical stimulation therapy used for Parkinsons, depression, chronic pain
2. UCLA stem cells scientists make electrically active motor neurons from iPS cells
3. Neuronal circuits able to rewire on the fly to sharpen senses
4. Innovative model connects circuit theory to wildlife corridors
5. Model connects circuit theory to wildlife corridors
6. e-Smart(R) Technologies, Inc., Announces Next Generation Superthin Polyimide Flexible Circuit Biometric Super Smart Card(TM) card, the i am(TM) Card.
7. New MIT tool probes brain circuits
8. Detecting dangerous chemicals with lasers, exploring the brains circuitry with light and more
9. Ultrasound shown to exert remote control of brain circuits
10. Case Western Reserve researchers develop wireless activation of brain circuits
11. Using combinatorial libraries to engineer genetic circuits advances synthetic biology
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Electrical circuit runs entirely off power in trees
(Date:4/28/2016)... 28, 2016 First quarter 2016:   ... compared with the first quarter of 2015 The gross ... M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... is unchanged, SEK 7,000-8,500 M. The operating margin for ...
(Date:4/19/2016)... April 20, 2016 The new ... a compact web-based "all-in-one" system solution for all door ... reader or the door interface with integration authorization management ... control systems. The minimal dimensions of the access control ... the building installations offer considerable freedom of design with ...
(Date:4/14/2016)... , April 14, 2016 ... Malware Detection, today announced the appointment of Eyal ... new role. Goldwerger,s leadership appointment comes at ... heels of the deployment of its platform at several ... biometric technology, which discerns unique cognitive and physiological factors, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... Md. , June 23, 2016 A person ... from the crime scene to track the criminal down. ... the U.S. Food and Drug Administration (FDA) uses DNA evidence ... Sound far-fetched? It,s not. The FDA ... sequencing to support investigations of foodborne illnesses. Put as simply ...
(Date:6/23/2016)... 2016   EpiBiome , a precision microbiome engineering ... debt financing from Silicon Valley Bank (SVB). The financing ... advance its drug development efforts, as well as purchase ... "SVB has been an incredible strategic partner to us ... bank would provide," said Dr. Aeron Tynes Hammack ...
(Date:6/23/2016)... NEWPORT BEACH, Calif. , June 23, 2016 /PRNewswire/ ... offering new biological discoveries to the medical community, has ... and co-founder Matthew Nunez . "We ... provide us with the capital we need to meet ... funding will essentially provide us the runway to complete ...
(Date:6/23/2016)... Connecticut (PRWEB) , ... June 23, 2016 , ... ... introduce a new line of intelligent tools designed, tuned and optimized exclusively for ... September 12–17 in Chicago. The result of a collaboration among several companies with ...
Breaking Biology Technology: