Navigation Links
Einstein researchers discover key to cell specialization
Date:11/10/2011

November 10, 2011 ─ (BRONX, NY) ─ Researchers at then (http://www.einstein.yu.edu/home/default.asp) Albert Einstein College of Medicine of Yeshiva University have uncovered a mechanism that governs how cells become specialized during development. Their findings could have implications for human health and disease and appear in the November 10 online edition of the journal Cell.

A fundamental question in biology is how a fertilized egg gives rise to many different cells in the body, such as nerve, blood and liver. By providing insight into that process, known as differentiation, the findings by the Einstein researchers are relevant to cancer, stem cell research and regenerative medicine.

The scientists studied cell differentiation in the fruit fly, Drosophila melanogaster. They found that cell specialization depends on a pair of proteins that act as super regulators of proteins that were already knownone super-regulating protein encouraging a cell to differentiate and the other trying to hold back the process.

The research was conducted by senior author Nicholas Baker, Ph.D., professor of genetics, of developmental and molecular biology, and of (http://www.einstein.yu.edu/departments/ophthalmology-visual-sciences/default.aspx?id=27847) ophthalmology and visual sciences at Einstein, and graduate student Abhishek Bhattacharya, the paper's lead author. They studied Helix-Loop-Helix proteins, "master-regulating" proteins that were known to play a role in the differentiation of fruit fly cells such as muscle, fat and nervous-system cells. By examining eye development in the fruit fly, they found that these master-regulating Helix-Loop-Helix proteins are in turn controlled by "super-regulating" proteins that bind with them.

Successful cell differentiation requires the presence of both master-regulating and super-regulating proteins. "If you don't turn both of those keys, cell differentiation doesn't work properly," said Dr. Baker.

One of these super-regulating proteins, called E-protein Daughterless (Da), binds with Helix-Loop-Helix proteins to activate them. Da also triggers expression of a protein called Extramacrochaetae (Emc), which turns the Helix-Loop-Helix proteins off. Through this feedback-loop mechanism, Da and Emc allow Helix-Loop-Helix proteins to function during specific times during fruit-fly development to create the fly's specialized cells.

Similar findings seem to apply to the Helix-Loop-Helix proteins that are present in human cells, where they are involved in cancer as well as in the differentiation of stem cells into specialized tissues. "We would expect that there will be people in the stem cell field that would be quite interested in what we have found," Dr. Baker said.


'/>"/>

Contact: Kim Newman
sciencenews@einstein.yu.edu
718-430-3101
Albert Einstein College of Medicine
Source:Eurekalert

Related biology news :

1. Einstein researchers develop a new way to study how breast cancer spreads
2. Einstein researchers develop technique to count messages made by single genes
3. Einstein scientists receive $10 million NIH grant
4. Empire State Stem Cell Board awards $12.7 million to Albert Einstein College of Medicine
5. Einstein and Pitt researchers develop new TB test that will dramatically cut diagnosis time
6. NIH funds research center for womens reproductive health at Einstein
7. Einstein researchers devise a fast and sensitive way to detect ricin
8. Einstein scientists move closer to a safer anthrax vaccine
9. Einstein receives high-risk/high-reward cancer research funding
10. Einstein to develop anti-HIV drug delivery system
11. Einstein researchers discover 2 new ways to kill TB
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)... -- Veratad Technologies, LLC ( www.veratad.com ), an innovative and ... solutions, announced today they will participate as a sponsor ... May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions of ... digital world, defining identity is critical to nearly every ...
(Date:4/19/2017)... 19, 2017 The global military ... is marked by the presence of several large global ... by five major players - 3M Cogent, NEC Corporation, ... for nearly 61% of the global military biometric market ... the global military biometrics market boast global presence, which ...
(Date:4/13/2017)... 13, 2017 According to a new market research ... Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and ... is expected to grow from USD 14.30 Billion in 2017 to USD ... 17.3%. ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... SANTA CRUZ, Calif. , Oct. 10, 2017 /PRNewswire/ ... SBIR grant from the NIH to develop RealSeq®-SC (Single ... preparation kit for profiling small RNAs (including microRNAs) from ... Cell Analysis Program highlights the need to accelerate development ... "New techniques for ...
(Date:10/9/2017)... SAN DIEGO , Oct. 9, 2017 /PRNewswire/ ... a biological mechanism by which its ProCell stem ... of critical limb ischemia.  The Company, demonstrated that ... the amount of limbs saved as compared to ... of the molecule HGF resulted in reduction of ...
(Date:10/9/2017)... Phoenix, Arizona (PRWEB) , ... October 09, 2017 ... ... of Kindred, a four-tiered line of medical marijuana products targeting the needs of ... production and packaging of Kindred takes place in Phoenix, Arizona. , As operators ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first commercially available Hi-C ... software to perform Hi-C metagenome deconvolution using their own facilities, supplementing the ...
Breaking Biology Technology: