Navigation Links
Einstein researchers discover key to cell specialization
Date:11/10/2011

November 10, 2011 ─ (BRONX, NY) ─ Researchers at then (http://www.einstein.yu.edu/home/default.asp) Albert Einstein College of Medicine of Yeshiva University have uncovered a mechanism that governs how cells become specialized during development. Their findings could have implications for human health and disease and appear in the November 10 online edition of the journal Cell.

A fundamental question in biology is how a fertilized egg gives rise to many different cells in the body, such as nerve, blood and liver. By providing insight into that process, known as differentiation, the findings by the Einstein researchers are relevant to cancer, stem cell research and regenerative medicine.

The scientists studied cell differentiation in the fruit fly, Drosophila melanogaster. They found that cell specialization depends on a pair of proteins that act as super regulators of proteins that were already knownone super-regulating protein encouraging a cell to differentiate and the other trying to hold back the process.

The research was conducted by senior author Nicholas Baker, Ph.D., professor of genetics, of developmental and molecular biology, and of (http://www.einstein.yu.edu/departments/ophthalmology-visual-sciences/default.aspx?id=27847) ophthalmology and visual sciences at Einstein, and graduate student Abhishek Bhattacharya, the paper's lead author. They studied Helix-Loop-Helix proteins, "master-regulating" proteins that were known to play a role in the differentiation of fruit fly cells such as muscle, fat and nervous-system cells. By examining eye development in the fruit fly, they found that these master-regulating Helix-Loop-Helix proteins are in turn controlled by "super-regulating" proteins that bind with them.

Successful cell differentiation requires the presence of both master-regulating and super-regulating proteins. "If you don't turn both of those keys, cell differentiation doesn't work properly," said Dr. Baker.

One of these super-regulating proteins, called E-protein Daughterless (Da), binds with Helix-Loop-Helix proteins to activate them. Da also triggers expression of a protein called Extramacrochaetae (Emc), which turns the Helix-Loop-Helix proteins off. Through this feedback-loop mechanism, Da and Emc allow Helix-Loop-Helix proteins to function during specific times during fruit-fly development to create the fly's specialized cells.

Similar findings seem to apply to the Helix-Loop-Helix proteins that are present in human cells, where they are involved in cancer as well as in the differentiation of stem cells into specialized tissues. "We would expect that there will be people in the stem cell field that would be quite interested in what we have found," Dr. Baker said.


'/>"/>

Contact: Kim Newman
sciencenews@einstein.yu.edu
718-430-3101
Albert Einstein College of Medicine
Source:Eurekalert

Related biology news :

1. Einstein researchers develop a new way to study how breast cancer spreads
2. Einstein researchers develop technique to count messages made by single genes
3. Einstein scientists receive $10 million NIH grant
4. Empire State Stem Cell Board awards $12.7 million to Albert Einstein College of Medicine
5. Einstein and Pitt researchers develop new TB test that will dramatically cut diagnosis time
6. NIH funds research center for womens reproductive health at Einstein
7. Einstein researchers devise a fast and sensitive way to detect ricin
8. Einstein scientists move closer to a safer anthrax vaccine
9. Einstein receives high-risk/high-reward cancer research funding
10. Einstein to develop anti-HIV drug delivery system
11. Einstein researchers discover 2 new ways to kill TB
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
(Date:4/26/2016)... Research and Markets has announced ... 2016-2020"  report to their offering.  , ,     (Logo: ... analysts forecast the global multimodal biometrics market to ... period 2016-2020.  Multimodal biometrics is being ... the healthcare, BFSI, transportation, automotive, and government for ...
(Date:4/14/2016)... AVIV, Israel , April 14, 2016 ... Behavioral Authentication and Malware Detection, today announced the appointment ... already assumed the new role. Goldwerger,s leadership ... BioCatch, on the heels of the deployment of its ... addition, BioCatch,s behavioral biometric technology, which discerns unique cognitive ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, ... microbial test has received AOAC Research Institute approval 061601. , “This is another ... year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample ... the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity ...
(Date:6/23/2016)... 2016 On Wednesday, June 22, 2016, ... 0.22%; the Dow Jones Industrial Average edged 0.27% lower to ... down 0.17%. Stock-Callers.com has initiated coverage on the following equities: ... (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... BIND ). Learn more about these stocks by accessing their ...
(Date:6/23/2016)... India , June 23, 2016 ... media market research report to its pharmaceuticals section ... profiles, product details and much more. ... spread across 151 pages, profiling 15 companies and ... available at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . ...
Breaking Biology Technology: