Navigation Links
Ecological globalization
Date:5/31/2008

Ecosystems are constantly exchanging materials through the movement of air in the atmosphere, the flow of water in rivers and the migration of animals across the landscape. People, however, have also established themselves as another major driver of connectivity among ecosystems. In the June 2008 Special Issue of Frontiers in Ecology and the Environment, titled Continental-scale ecology in an increasingly connected world, ecologists discuss how human influences interact with natural processes to influence connectivity at the continental scale. The authors conclude that networks of large-scale experiments are needed to predict long-term ecological change.

We know that the world has always been connected via a common atmosphere and the movement of water, says Debra Peters, an author in the issue and a scientist with the United States Department of Agricultures Agricultural Research Service (USDA-ARS). The world is also becoming highly interconnected through the movement of people and the transport of goods locally to globally. Among ecologists, there is an increasing realization that these connections can have profound influences on the long-term dynamics of ecological systems.

The transport of many types of materials, including gases, minerals and even organisms, can affect natural systems. This movement results in greenlash, which occurs when environmental changes localized to a small geographic area have far-reaching effects in other areas. For example, a drought in the 1930s caused small-scale farmers to abandon their farms across the U.S. Midwest. The absence of crops intensified local soil erosion, leading to powerful dust storms. Large amounts of wind-swept dust traveled across the continent, causing the infamous Dust Bowl and affecting air quality, public health and patterns of human settlement throughout the country.

Because of increasing globalization, people often inadvertently introduce non-native plants, animals and diseases into new locations. Invasive species and pathogens, such as fire ants from South America and the SARS virus from China, can create large, expensive problems: the U.S. currently spends over $120 billion per year on measures to prevent and eradicate invasive species. Understanding ecosystem connectivity across a range of scales from local to regional to continental will help scientists predict where invasive species are likely to go next.

The authors agree that field ecology studies should focus on long-term sampling networks that encompass a range of geographical scales. Integrating data from existing and developing networks, such as the National Science Foundations Long Term Ecological Research network (LTER) and NSFs National Ecological Observatory Network (NEON), will lead to a level of power for ecological comparison unparalleled by any one experiment.

To draw conclusions about the consequences of increasing connectivity, we need to provide information about processes that span a vast scale of space and time, says David Schimel, an author in the issue and the chief executive officer of the NEON project. Our observations will characterize ecological processes from the genomic to the continental and document changes from seconds to decades.

Additionally, the authors suggest that long-term studies should include data from social and behavioral science to allow incorporation of human movement patterns into their scientific models. Ecologists hope that understanding the patterns of connectivity within and among ecosystems will lead to more accurate predictions of future ecological change.


'/>"/>

Contact: Christine Buckley
christine@esa.org
202-833-8773
Ecological Society of America
Source:Eurekalert

Related biology news :

1. Managing uncertainty important in ecological balance: ASU researcher
2. Ecological genetics of freshwater bacteria surveyed
3. Mellon awards Carnegie Grant for Ecological Monitoring in South Africa
4. Biogeochemistry -- A window into the Earths ecological health
5. Book on weeds and invasive plants discusses how to manage them using ecological approaches
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or the "Company"), ... Report on Form 10-K on Thursday April 13, 2017 with the ... The ... section of the Company,s website at http://www.nxt-id.com  under "SEC Filings," ... 2016 Year Highlights: Acquisition of ...
(Date:4/11/2017)... BEACH GARDENS, Fla. , April 11, 2017 ... identity management and secure authentication solutions, today announced ... contract by Intelligence Advanced Research Projects Activity (IARPA) ... for IARPA,s Thor program. "Innovation has ... onset and IARPA,s Thor program will allow us ...
(Date:4/11/2017)... 2017 NXT-ID, Inc. (NASDAQ:   NXTD ... the appointment of independent Directors Mr. Robin D. Richards ... of Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , Chief ... to their guidance and benefiting from their considerable expertise as ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... in Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration ... to provide CRISPR researchers with additional tools for gene editing across all applications. ...
(Date:10/12/2017)... ... October 12, 2017 , ... BioMedGPS announces expanded ... of its newest module, US Hemostats & Sealants. , SmartTRAK’s US Market for ... fibrin sealants, synthetic sealants and biologic sealants used in surgical applications. BioMedGPS estimates ...
(Date:10/12/2017)... CA (PRWEB) , ... October ... ... (https://www.onramp.bio/ ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed ... bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, who made ...
Breaking Biology Technology: